Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Autoimmun Rev ; 23(6): 103576, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38909720

RESUMO

Mitochondria are the main sites of aerobic respiration in the cell and mainly provide energy for the organism, and play key roles in adenosine triphosphate (ATP) synthesis, metabolic regulation, and cell differentiation and death. Mitochondrial dysfunction has been identified as a contributing factor to a variety of diseases. The kidney is rich in mitochondria to meet energy needs, and stable mitochondrial structure and function are essential for normal kidney function. Recently, many studies have shown a link between mitochondrial dysfunction and kidney disease, maintaining mitochondrial homeostasis has become an important target for kidney therapy. In this review, we integrate the role of mitochondrial dysfunction in different kidney diseases, and specifically elaborate the mechanism of mitochondrial reactive oxygen species (mtROS), autophagy and ferroptosis involved in the occurrence and development of kidney diseases, providing insights for improved treatment of kidney diseases.


Assuntos
Nefropatias , Mitocôndrias , Espécies Reativas de Oxigênio , Humanos , Mitocôndrias/metabolismo , Nefropatias/metabolismo , Nefropatias/etiologia , Animais , Espécies Reativas de Oxigênio/metabolismo , Autofagia/fisiologia , Ferroptose/fisiologia , Rim/metabolismo , Rim/patologia
2.
Sci Total Environ ; 946: 174029, 2024 Oct 10.
Artigo em Inglês | MEDLINE | ID: mdl-38944297

RESUMO

Trichloroethylene (TCE) is a common environmental pollutant and industrial chemical that has been associated with adverse health effects, especially on organ systems. The purpose of this review is to summarize the current findings on organ system damage caused by TCE exposure and the underlying mechanisms involved. Numerous studies have shown that TCE exposure may cause damage to multiple organ systems, mainly the skin, liver, kidney, and circulatory system. The mechanisms leading to TCE-induced organ system damage are complex and diverse. TCE is metabolized in vivo to reactive intermediates, through which TCE can induce oxidative stress, interfere with cell signaling pathways, and promote inflammatory responses. In addition, studies have shown that TCE interferes with DNA repair mechanisms, leading to genotoxicity and potentially carcinogenic effects. This review highlights the importance of understanding the deleterious effects of TCE exposure on organ systems and provides insights into the underlying mechanisms involved. Further research is needed to elucidate the full range of organ system damage caused by TCE and to develop effective prevention and treatment strategies.


Assuntos
Exposição Ambiental , Poluentes Ambientais , Tricloroetileno , Tricloroetileno/toxicidade , Humanos , Poluentes Ambientais/toxicidade , Exposição Ambiental/efeitos adversos , Estresse Oxidativo
3.
Cell Discov ; 10(1): 47, 2024 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-38704363

RESUMO

Neutrophils are the most abundant immune cells that first respond to insults in circulation. Although associative evidence suggests that differences in neutrophils may be linked to the sex-specific vulnerability of inflammatory diseases, mechanistic links remain elusive. Here, we identified extensive sex-specific heterogeneity in neutrophil composition under normal and auto-inflammatory conditions at single-cell resolution. Using a combination of single-cell RNA sequencing analysis, neutrophil-specific genetic knockouts and transfer experiments, we discovered dysregulation of two unconventional (interferon-α responsive and T cell regulatory) neutrophil subsets leading to male-biased incidence, severity and poor prognosis of auto-inflammatory Behçet's uveitis. Genome-wide association study (GWAS) and exosome study revealed that male-specific negative effects of both genetic factors and circulating exosomes on unconventional neutrophil subsets contributed to male-specific vulnerability to disease. Collectively, our findings identify sex-specifically distinct neutrophil subsets and highlight unconventional neutrophil subsets as sex-specific therapeutic targets to limit inflammatory diseases.

4.
PLoS One ; 9(3): e92502, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-24651578

RESUMO

Single nucleotide polymorphisms (SNPs) have become the marker of choice for genome-wide association studies in many species. High-throughput sequencing of RNA was developed primarily to analyze global gene expression, while it is an efficient way to discover SNPs from the expressed genes. In this study, we conducted transcriptome sequencing of the swimbladder of Takifugu rubripes using Illumina HiSeq2000 platform to identify gene-associated SNPs in the swimbladder. A total of 30,312,181 unique-mapped-reads were obtained from 44,736,850 raw reads. A total of 62,270 putative SNPs were discovered, which were located in 11,306 expressed genes and 2,246 scaffolds. The average minor allele frequency (MAF) of the SNPs was 0.26. GO and KEGG pathway analysis were conducted to analyze the genes containing SNPs. Validation of selected SNPs revealed that 54% of SNPs (26/48) were true SNPs. The results suggest that RNA-Seq is an efficient and cost-effective approach to discover gene-associated SNPs. In this study, a large number of SNPs were identified and these data will be useful resources for population genetic study, evolution analysis, resource assessment, genetic linkage analysis and genome-wide association studies.


Assuntos
Polimorfismo de Nucleotídeo Único , Takifugu/genética , Transcriptoma , Alelos , Animais , Biologia Computacional/métodos , Frequência do Gene , Marcadores Genéticos , Estudo de Associação Genômica Ampla , Genótipo , Humanos , Pulmão , Anotação de Sequência Molecular , Reprodutibilidade dos Testes , Proteínas Wnt/genética
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA