Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 221
Filtrar
1.
Front Microbiol ; 15: 1447785, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39119139

RESUMO

The ability of Deinococcus bacteria to survive in harsh environments, such as high radiation, extreme temperature, and dryness, is mainly attributed to the generation of unique pigments, especially carotenoids. Although the limited number of natural pigments produced by these bacteria restricts their industrial potential, metabolic engineering and synthetic biology can significantly increase pigment yield and expand their application prospects. In this study, we review the properties, biosynthetic pathways, and functions of key enzymes and genes related to these pigments and explore strategies for improving pigment production through gene editing and optimization of culture conditions. Additionally, studies have highlighted the unique role of these pigments in antioxidant activity and radiation resistance, particularly emphasizing the critical functions of deinoxanthin in D. radiodurans. In the future, Deinococcus bacterial pigments will have broad application prospects in the food industry, drug production, and space exploration, where they can serve as radiation indicators and natural antioxidants to protect astronauts' health during long-term space flights.

2.
J Agric Food Chem ; 72(33): 18497-18506, 2024 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-39099138

RESUMO

Synbiotics, the combination of probiotics and prebiotics, are thought to be a pragmatic approach for the treatment of various diseases, including inflammatory bowel disease (IBD). The synergistic therapeutic effects of probiotics and prebiotics remain underexplored. Clostridium tyrobutyricum, a short-chain fatty acid (SCFA) producer, has been recognized as a promising probiotic candidate that can offer health benefits. In this study, the treatment effects of synbiotics containing C. tyrobutyricum and chitooligosaccharides (COSs) on IBD were evaluated. The results indicated that the synbiotic supplement effectively relieved inflammation and restored intestinal barrier function. Additionally, the synbiotic supplement could contribute to the elimination of reactive oxygen species (ROS) and improve the production of SCFAs through the SCFAs-producer of C. tyrobutyricum. Furthermore, such the synbiotic could also regulate the composition of gut microbiota. These findings underscore the potential of C. tyrobutyricum and COSs as valuable living biotherapeutics for the treatment of intestinal-related diseases.


Assuntos
Clostridium tyrobutyricum , Microbioma Gastrointestinal , Doenças Inflamatórias Intestinais , Oligossacarídeos , Simbióticos , Microbioma Gastrointestinal/efeitos dos fármacos , Oligossacarídeos/administração & dosagem , Doenças Inflamatórias Intestinais/microbiologia , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/terapia , Doenças Inflamatórias Intestinais/metabolismo , Clostridium tyrobutyricum/metabolismo , Animais , Humanos , Simbióticos/administração & dosagem , Camundongos , Masculino , Ácidos Graxos Voláteis/metabolismo , Camundongos Endogâmicos C57BL , Probióticos/administração & dosagem , Probióticos/farmacologia , Prebióticos/administração & dosagem , Quitosana
3.
Microbiol Spectr ; : e0029124, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39162538

RESUMO

Tryptophan (TRP) metabolites have been identified as potent biomarkers for complications of type 2 diabetes mellitus (T2DM). However, it remains unclear whether the therapeutic effect of metformin in T2DM is related to the modulation of TRP metabolic pathway. This study aims to investigate whether metformin affects TRP metabolism in T2DM mice through the gut microbiota. A liquid chromatography-tandem mass spectrometry method was established to determine 16 TRP metabolites in the serum, colon content, urine, and feces of T2DM mice, and the correlations between metabolites and the T2DM mice gut microbiota were performed. The method demonstrated acceptable linearity (R2 > 0.996), with the limit of quantification ranging from 0.29 to 69.444 nmol/L for 16 analytes, and the limit of detection ranging from 0.087 to 20.833 nmol/L. In T2DM mice, metformin treatment effectively restored levels of indole-3-lactic acid (ILA), indole-3-propionic acid (IPA), and the ILA/IPA ratio, along with several aryl hydrocarbon receptor ligands in the serum, with a notable impact in the colon but not in the urine. This restoration was accompanied by a shift in the relative abundance of Dubosiella, Turicibacter, RF39, Clostridia_UCG-014, and Alistipes. Spearman's correlation analysis revealed positive correlations between Turicibacter and Alistipes with IPA and indole-3-acetic acid. Conversely, these genera displayed negative correlations with ILA and kynurenine. In addition, our study revealed the presence of endogenous indole pathway in germ-free mice, and the impact of metformin on endogenous TRP metabolism in T2DM mice cannot be disregarded. Further research is needed to investigate the regulation of TRP metabolism by metformin. IMPORTANCE: This study provides valuable insights into the interrelationship between metformin administration, changes in the tryptophan (TRP) metabolome, and gut microbiota in type 2 diabetes mellitus (T2DM) mice. Indole-3-lactic acid (ILA)/indole-3-propionic acid (IPA) emerges as a potential biomarker for the development of T2DM and prediction of therapeutic response. While the indole metabolic pathway has long been associated exclusively with the gut microbiome, recent research has demonstrated the ability of host interleukin-4-induced-1 to metabolize TRP. The detection of indole derivatives in the serum of germ-free mice suggests the existence of inherent endogenous indole metabolic pathways. These findings deepen our understanding of metformin's efficacy in correcting TRP metabolic disorders and provide valuable directions for further investigation. Moreover, this knowledge may pave the way for the development of targeted treatment strategies for T2DM, focusing on the gut microbiome and restoration of associated TRP metabolism.

4.
Cryobiology ; 117: 104957, 2024 Sep 13.
Artigo em Inglês | MEDLINE | ID: mdl-39179195

RESUMO

Establishment of a new method for improved shoot tip cryopreservation is crucial to facilitate the long-term preservation of plant germplasm as well as the use of cryotherapy for pathogen eradication. The present study reported a vitrification (V) cryo-foil method for shoot tip cryopreservation and virus eradication in apple. Shoot tip regrowth levels after cryopreservation were comparable among V cryo-foil (53 %), V cryo-plate (46 %) and conventional droplet vitrification (Dr-vi, 48 %). The V cryo-foil is more efficient to perform than Dr-vi as more shoot tips can be cryopreserved by one person. In the histological study applying an image-overlaying strategy, shoot tips cryopreserved by V cryo-foil showed a higher survival chance in the youngest leaf primordia than in the apical dome. When V cryo-foil was tested for virus eradication, fifty-five percent (55 %) of cryo-derived shoots were free of the apple stem pitting virus (ASPV), while none and less than 10 % were free of the apple stem grooving virus (ASGV) and the apple chlorotic leaf spot virus (ACLSV), respectively. Thus, these two viruses were efficiently preserved by V cryo-foil cryopreservation. Noticeably, although the shoot regrowth level was reduced to 27 %, a higher frequency (81 %) of ASPV eradication was achieved when a reduced duration of cryoprotectant exposure was applied in V cryo-foil, supporting the use of insufficient cryoprotection for improved virus eradication.

5.
Clin Immunol ; 266: 110331, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-39067675

RESUMO

Co-activation signal that induces/sustains pleiotropic effector functions of antigen-specific γδ T cells remains unknown. Here, Mycobacteria tuberculosis (Mtb) tuberculin administration during tuberculosis (TB) skin test resulted in rapid expression of co-activation signal molecules CD137 and CD107a by fast-acting Vγ2Vδ2 T cells in TB-resistant subjects (Resisters), but not patients with active TB. And, anti-CD137 agonistic antibody treatment experiments showed that CD137 signaling enabled Vγ2Vδ2 T cells to produce more effector cytokines and inhibit intracellular Mtb growth in macrophages (Mɸ). Consistently, Mtb antigen (Ag) HMBPP stimulation induced sustainable high-level CD137 expression in fresh and activated Vγ2Vδ2 T cells from uninfected subjects, but not TB patients. CD137+Vγ2Vδ2 T-cell subtype predominantly displayed central memory phenotype and mounted better proliferative responses than CD137-Vγ2Vδ2 T-cells. In response to HMBPP, CD137+Vγ2Vδ2 T-cell subtype rapidly differentiated into greater numbers of pleiotropic effector cells producing anti-Mtb cytokines compared to CD137-Vγ2Vδ2 T subtype, with the non-canonical NF-κB pathway involved. CD137 expression in Vγ2Vδ2 T cells appeared to signal anti-Mtb effector functions leading to intracellular Mtb growth inhibition in Mɸ, and active TB disrupted such CD137-driven anti-Mtb effector functions. CD137+Vγ2Vδ2 T-cells subtype exhibited an epigenetic-driven high-level expression of GM-CSF and de novo production of GM-CSF critical for Vγ2Vδ2 T-cell controlling of Mtb growth in Mϕ. Concurrently, exosomes produced by CD137+Vγ2Vδ2 T cells potently inhibited intracellular mycobacterial growth. Furthermore, adoptive transfer of human CD137+Vγ2Vδ2 T cells to Mtb-infected SCID mice conferred protective immunity against Mtb infection. Thus, our data suggest that CD137 expression/signaling drives pleiotropic γδ T-cell effector functions that inhibit intracellular Mtb growth.


Assuntos
Mycobacterium tuberculosis , Transdução de Sinais , Tuberculose , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral , Adulto , Animais , Feminino , Humanos , Masculino , Camundongos , Antígenos de Bactérias/imunologia , Citocinas/metabolismo , Citocinas/imunologia , Ativação Linfocitária/imunologia , Macrófagos/imunologia , Camundongos SCID , Mycobacterium tuberculosis/imunologia , Receptores de Antígenos de Linfócitos T gama-delta/metabolismo , Receptores de Antígenos de Linfócitos T gama-delta/imunologia , Transdução de Sinais/imunologia , Tuberculose/imunologia , Tuberculose/microbiologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/imunologia , Membro 9 da Superfamília de Receptores de Fatores de Necrose Tumoral/metabolismo
6.
J Environ Sci (China) ; 146: 67-80, 2024 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38969463

RESUMO

Groundwater is the main source of drinking water for the rural population in the chronic kidney disease of unknown etiology (CKDu) zone of the North Central Province (NCP) in Sri Lanka. In this study, a total of 334 groundwater samples (311 dug wells, 21 tube wells and 2 springs) during the wet season from two aquifers in the NCP were collected, and investigated their chemical characteristics and evaluate their water quality, including groundwater chemistry, main ion sources, the corrosion and scaling potential of groundwater. The results showed that the two hydrochemical types of groundwater in the NCP were mainly of the Ca-HCO3, Na·Ca-HCO3 types, with the main HCO3-, Na+ and Ca2+ ions in both types of groundwater originating from silicate and evaporite salt dissolution and influenced by alternating cation adsorption, while the presence of NO3- was mainly anthropogenic. Evaluation of water stability using namely Langelier saturation index (LSI), Ryznar stability index (RSI), Puckorius scaling index (PSI) and Larson-Skold index (LS), indicated that most groundwater presents corrosion potential and has corrosion behavior tendency of metals to some degrees. The water quality of Polonnaruwa was better than that of Anuradhapura in the NCP, and when the groundwater was worse than the "good" grade, which must be properly treated before it is used as drinking water.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Poluentes Químicos da Água , Sri Lanka , Água Subterrânea/química , Poluentes Químicos da Água/análise , Qualidade da Água , Insuficiência Renal Crônica , Água Potável/química , Água Potável/análise , Abastecimento de Água
7.
Molecules ; 29(13)2024 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-38999069

RESUMO

The prevalence of major bacterial infections has emerged as a significant menace to human health and life. Conventional treatment methods primarily rely on antibiotic therapy, but the overuse of these drugs has led to a decline in their efficacy. Moreover, bacteria have developed resistance towards antibiotics, giving rise to the emergence of superbugs. Consequently, there is an urgent need for novel antibacterial agents or alternative strategies to combat bacterial infections. Nanoantibiotics encompass a class of nano-antibacterial materials that possess inherent antimicrobial activity or can serve as carriers to enhance drug delivery efficiency and safety. In recent years, metal nanoclusters (M NCs) have gained prominence in the field of nanoantibiotics due to their ultra-small size (less than 3 nm) and distinctive electronic and optical properties, as well as their biosafety features. In this review, we discuss the recent progress of M NCs as a new generation of antibacterial agents. First, the main synthesis methods and characteristics of M NCs are presented. Then, we focus on reviewing various strategies for detecting and treating pathogenic bacterial infections using M NCs, summarizing the antibacterial effects of these nanoantibiotics on wound infections, biofilms, and oral infections. Finally, we propose a perspective on the remaining challenges and future developments of M NCs for bacterial infectious therapy.


Assuntos
Antibacterianos , Infecções Bacterianas , Nanopartículas Metálicas , Antibacterianos/farmacologia , Antibacterianos/química , Antibacterianos/uso terapêutico , Infecções Bacterianas/tratamento farmacológico , Infecções Bacterianas/microbiologia , Nanopartículas Metálicas/química , Nanopartículas Metálicas/uso terapêutico , Humanos , Bactérias/efeitos dos fármacos , Biofilmes/efeitos dos fármacos , Animais
9.
RSC Adv ; 14(27): 19284-19293, 2024 Jun 12.
Artigo em Inglês | MEDLINE | ID: mdl-38887651

RESUMO

Bovine serum albumin-stabilized Au nanoclusters (BSA-Au NCs) have emerged as promising contenders for imaging agents and highly sensitive fluorescence sensors due to their biocompatibility and strong photoluminescence. Optimizing the synthesis conditions of BSA-Au NCs is crucial for enhancing fluorescence imaging and other nanocluster applications. In this study, for the first time, we systematically investigated the effects of BSA concentration and Au3+ on both particle size and optical characteristics of BSA-Au NCs. When the two components achieved a suitable concentration ratio, it was beneficial to form BSA-Au NCs with a high quantum yield (QY = 74.30%) and good fluorescence stability. In contrast, an inappropriate concentration ratio would lead to the formation of gold nanoparticles (Au NPs), and their internal filtration effect (IFE) would attenuate the fluorescence emission of BSA-Au NCs. The BSA-Au NCs were then employed as efficient fluorescence sensors for detecting Hg2+. Furthermore, the growth mechanism of BSA-Au NCs was elucidated by monitoring fluorescence changes during different incubation times. The BSA-Au NCs with a high quantum yield introduce a novel synthetic concept for sensitive fluorescent probes and expanding versatile applications of BSA-Au NCs in catalysis, chemical sensing and biomedicine.

10.
Nutrients ; 16(11)2024 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-38892631

RESUMO

This study investigated the effect of astragalus polysaccharide (APS, an ingredient with hypoglycemic function in a traditional Chinese herbal medicine) on gut microbiota and metabolites of type 2 diabetes mellitus (T2DM) patients using a simulated fermentation model in vitro. The main components of APS were isolated, purified, and structure characterized. APS fermentation was found to increase the abundance of Lactobacillus and Bifidobacterium and decrease the Escherichia-Shigella level in the fecal microbiota of T2DM patients. Apart from increasing propionic acid, APS also caused an increase in all-trans-retinoic acid and thiamine (both have antioxidant properties), with their enrichment in the KEGG pathway associated with thiamine metabolism, etc. Notably, APS could also enhance fecal antioxidant properties. Correlation analysis confirmed a significant positive correlation of Lactobacillus with thiamine and DPPH-clearance rate, suggesting the antioxidant activity of APS was related to its ability to enrich some specific bacteria and upregulate their metabolites.


Assuntos
Antioxidantes , Astrágalo , Diabetes Mellitus Tipo 2 , Fezes , Fermentação , Microbioma Gastrointestinal , Polissacarídeos , Microbioma Gastrointestinal/efeitos dos fármacos , Humanos , Diabetes Mellitus Tipo 2/metabolismo , Diabetes Mellitus Tipo 2/tratamento farmacológico , Polissacarídeos/farmacologia , Astrágalo/química , Fezes/microbiologia , Antioxidantes/farmacologia , Masculino , Feminino , Pessoa de Meia-Idade , Tiamina/farmacologia , Tiamina/metabolismo , Bifidobacterium/metabolismo , Bifidobacterium/efeitos dos fármacos , Lactobacillus/metabolismo , Lactobacillus/efeitos dos fármacos , Hipoglicemiantes/farmacologia
11.
Foods ; 13(11)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38890854

RESUMO

Owing to the interplay of genetic and environmental factors, obesity has emerged as a significant global public health concern. To gain enhanced control over obesity, we examined the effects of type 2 resistant starch (RS2) and its promoted microbial-derived metabolite, indole-3-propionic acid (IPA), on hepatic steatosis, antioxidant activity, and gut microbiota in obese mice. Neither RS2 nor low-dose IPA (20 mg kg-1) exhibited a reduction in body weight or improved glucose and lipid metabolism in post-obesity state mice continuously fed the high-fat diet (HFD). However, both interventions improved hepatic steatosis, with RS2 being more effective in all measured parameters, potentially due to changes in gut microbiota and metabolites not solely attributed to IPA. LC-MS/MS analysis revealed increased serum IPA levels in both RS2 and IPA groups, which positively correlated with Bifidobacterium and Clostridium. Moreover, RS2 exhibited a more significant restoration of gut dysbiosis by promoting the abundance of health-promoting bacteria including Faecalibaculum and Bifidobacterium. These findings suggest that the regulatory role of RS2 on tryptophan metabolism only partially explains its prebiotic activity. Future studies should consider increasing the dose of IPA and combining RS2 and IPA to explore their potential interventions in obesity.

12.
J Hazard Mater ; 472: 134480, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38703683

RESUMO

The widespread use of polyethylene terephthalate (PET) in various industries has led to a surge in microplastics (MPs) pollution, posing a significant threat to ecosystems and human health. To address this, we have developed a bacterial enzyme cascade reaction system (BECRS) that focuses on the efficient degradation of PET. This system harnesses the Escherichia coli (E. coli) surface to display CsgA protein, which forms curli fibers, along with the carbohydrate-binding module 3 (CBM3) and PETases, to enhance the adsorption and degradation of PET. The study demonstrated that the BECRS achieved a notable PET film degradation rate of 3437 ± 148 µg/(d*cm²), with a degradation efficiency of 21.40% for crystalline PET MPs, and the degradation products were all converted to TPA. The stability of the system was evidenced by retaining over 80% of its original activity after multiple uses and during one month of storage. Molecular dynamics simulations confirmed that the presence of CsgA did not interfere with the enzymatic activity of PETases. This BECRS represents a significant step forward in the biodegradation of PET, particularly microplastics, offering a practical and sustainable solution for environmental pollution control.


Assuntos
Biodegradação Ambiental , Escherichia coli , Polietilenotereftalatos , Polietilenotereftalatos/metabolismo , Polietilenotereftalatos/química , Escherichia coli/metabolismo , Microplásticos/metabolismo , Microplásticos/química , Proteínas de Bactérias/metabolismo , Proteínas de Bactérias/química , Simulação de Dinâmica Molecular , Proteínas de Escherichia coli/metabolismo , Adsorção
13.
Int J Biol Macromol ; 269(Pt 2): 132196, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38723818

RESUMO

Enzymatic synthesis of biochemicals in vitro is vital in synthetic biology for its efficiency, minimal by-products, and easy product separation. However, challenges like enzyme preparation, stability, and reusability persist. Here, we introduced a protein scaffold and biosilicification coupled system, providing a singular process for the purification and immobilization of multiple enzymes. Using d-mannitol as a model, we initially constructed a self-assembling EE/KK protein scaffold for the co-immobilization of glucose dehydrogenase and mannitol dehydrogenase. Under an enzyme-to-scaffold ratio of 1:8, a d-mannitol yield of 0.692 mol/mol was achieved within 4 h, 2.16-fold higher than the free enzymes. The immobilized enzymes retained 70.9 % of the initial joint activity while the free ones diminished nearly to inactivity after 8 h. Furthermore, we incorporated the biosilicification peptide CotB into the EE/KK scaffold, inducing silica deposition, which enabled the one-step purification and immobilization process assisted by Spy/Snoop protein-peptide pairs. The coupled system demonstrated a comparable d-mannitol yield to that of EE/KK scaffold and 1.34-fold higher remaining activities after 36 h. Following 6 cycles of reaction, the immobilized system retained the capability to synthesize 56.4 % of the initial d-mannitol titer. The self-assembly co-immobilization platform offers an effective approach for enzymatic synthesis of d-mannitol and other biochemicals.


Assuntos
Enzimas Imobilizadas , Manitol , Manitol/química , Enzimas Imobilizadas/química , Enzimas Imobilizadas/metabolismo , Glucose 1-Desidrogenase/metabolismo , Glucose 1-Desidrogenase/química , Manitol Desidrogenases/metabolismo , Manitol Desidrogenases/química
14.
Ann Hematol ; 103(7): 2323-2335, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38722387

RESUMO

BACKGROUND: Acute myeloid leukemia (AML) patients with various nucleophosmin 1 (NPM1) mutations are controversial in the prognosis. This study aimed to investigate the prognosis of patients according to types of NPM1 mutations (NPM1mut). METHODS: Bone marrow samples of 528 patients newly diagnosed with AML, were collected for morphology, immunology, cytogenetics, and molecular biology examinations. Gene mutations were detected by next-generation sequencing (NGS) technology. RESULTS: About 25.2% of cases exhibited NPM1mut. 83.5% of cases were type A, while type B and D were respectively account for 2.3% and 3.0%. Furthermore, 15 cases of rare types were identified, of which 2 cases have not been reported. Clinical characteristics were similar between patients with A-type NPM1 mutations (NPM1A - type mut) and non-A-type NPM1 mutations (NPM1non - A-type mut). Event-free survival (EFS) was significantly different between patients with low NPM1non - A-type mut variant allele frequency (VAF) and low NPM1A - type mut VAF (median EFS = 3.9 vs. 8.5 months, P = 0.020). The median overall survival (OS) of the NPM1non - A-type mutFLT3-ITDmut group, the NPM1A - type mutFLT3-ITDmut group, the NPM1non - A-type mutFLT3-ITDwt group, and the NPM1A - type mutFLT3-ITDwt group were 3.9, 10.7, 17.3 and 18.8 months, while the median EFS of the corresponding groups was 1.4, 5.0, 7.6 and 9.2 months (P < 0.0001 and P = 0.004, respectively). CONCLUSIONS: No significant difference was observed in OS and EFS between patients with NPM1A - type mut and NPM1non - A-type mut. However, types of NPM1 mutations and the status of FLT3-ITD mutations may jointly have an impact on the prognosis of AML patients.


Assuntos
Leucemia Mieloide Aguda , Mutação , Proteínas Nucleares , Nucleofosmina , Humanos , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/mortalidade , Leucemia Mieloide Aguda/diagnóstico , Masculino , Pessoa de Meia-Idade , Feminino , Proteínas Nucleares/genética , Adulto , Idoso , Adolescente , Prognóstico , Idoso de 80 Anos ou mais , Adulto Jovem , Taxa de Sobrevida
15.
Front Immunol ; 15: 1397541, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38774870

RESUMO

Aim: Despite the significant therapeutic outcomes achieved in systemic treatments for liver hepatocellular carcinoma (LIHC), it is an objective reality that only a low proportion of patients exhibit an improved objective response rate (ORR) to current immunotherapies. Antibody-dependent cellular phagocytosis (ADCP) immunotherapy is considered the new engine for precision immunotherapy. Based on this, we aim to develop an ADCP-based LIHC risk stratification system and screen for relevant targets. Method: Utilizing a combination of single-cell RNA sequencing (scRNA-seq) and bulk RNA-seq data, we screened for ADCP modulating factors in LIHC and identified differentially expressed genes along with their involved functional pathways. A risk scoring model was established by identifying ADCP-related genes with prognostic value through LASSO Cox regression analysis. The risk scoring model was then subjected to evaluations of immune infiltration and immunotherapy relevance, with pan-cancer analysis and in vitro experimental studies conducted on key targets. Results: Building on the research by Kamber RA et al., we identified GYPA, CLDN18, and IRX5 as potential key target genes regulating ADCP in LIHC. These genes demonstrated significant correlations with immune infiltration cells, such as M1-type macrophages, and the effectiveness of immunotherapy in LIHC, as well as a close association with clinical pathological staging and patient prognosis. Pan-cancer analysis revealed that CLDN18 was prognostically and immunologically relevant across multiple types of cancer. Validation through tissue and cell samples confirmed that GYPA and CLDN18 were upregulated in liver cancer tissues and cells. Furthermore, in vitro knockdown of CLDN18 inhibited the malignancy capabilities of liver cancer cells. Conclusion: We have identified an ADCP signature in LIHC comprising three genes. Analysis based on a risk scoring model derived from these three genes, coupled with subsequent experimental validation, confirmed the pivotal role of M1-type macrophages in ADCP within LIHC, establishing CLDN18 as a critical ADCP regulatory target in LIHC.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , RNA-Seq , Feminino , Humanos , Masculino , Biomarcadores Tumorais/genética , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/imunologia , Carcinoma Hepatocelular/terapia , Claudinas/genética , Perfilação da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Imunoterapia/métodos , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/imunologia , Neoplasias Hepáticas/terapia , Fagocitose/genética , Prognóstico , Análise da Expressão Gênica de Célula Única , Microambiente Tumoral/imunologia , Microambiente Tumoral/genética
16.
J Appl Clin Med Phys ; 25(8): e14404, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38803034

RESUMO

BACKGROUND AND PURPOSE: This study aimed to compare the dosimetric attributes of two multi-leaf collimator based techniques, HyperArc and Incise CyberKnife, in the treatment of brain metastases. MATERIAL AND METHODS: 17 cases of brain metastases were selected including 6 patients of single lesion and 11 patients of multiple lesions. Treatment plans of HyperArc and CyberKnife were designed in Eclipse 15.5 and Precision 1.0, respectively, and transferred to Velocity 3.2 for comparison. RESULTS: HyperArc plans provided superior Conformity Index (0.91 ± 0.06 vs. 0.77 ± 0.07, p < 0.01) with reduced dose distribution in organs at risk (Dmax, p < 0.05) and lower normal tissue exposure (V4Gy-V20Gy, p < 0.05) in contrast to CyberKnife plans, although the Gradient Indexes were similar. CyberKnife plans showed higher Homogeneity Index (1.54 ± 0.17 vs. 1.39 ± 0.09, p < 0.05) and increased D2% and D50% in the target (p < 0.05). Additionally, HyperArc plans had significantly fewer Monitor Units (MUs) and beam-on time (p < 0.01). CONCLUSION: HyperArc plans demonstrated superior performance compared with MLC-based CyberKnife plans in terms of conformity and the sparing of critical organs and normal tissues, although no significant difference in GI outcomes was noted. Conversely, CyberKnife plans achieved a higher target dose and HI. The study suggests that HyperArc is more efficient and particularly suitable for treating larger lesions in brain metastases.


Assuntos
Neoplasias Encefálicas , Órgãos em Risco , Radiocirurgia , Dosagem Radioterapêutica , Planejamento da Radioterapia Assistida por Computador , Radioterapia de Intensidade Modulada , Humanos , Neoplasias Encefálicas/secundário , Neoplasias Encefálicas/cirurgia , Neoplasias Encefálicas/radioterapia , Planejamento da Radioterapia Assistida por Computador/métodos , Radiocirurgia/métodos , Órgãos em Risco/efeitos da radiação , Radioterapia de Intensidade Modulada/métodos , Prognóstico , Radiometria/métodos
17.
Biotechnol J ; 19(4): e2300584, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38651247

RESUMO

The use of a combination of several antibacterial agents for therapy holds great promise in reducing the dosage and side effects of these agents, improving their efficiency, and inducing potential synergistic therapeutic effects. Herein, this study provides an innovative antibacterial treatment strategy by synergistically combining R12-AgNPs with H2O2 therapy. R12-AgNPs were simply produced with the supernatant of an ionizing radiation-tolerant bacterium Deinococcus wulumuqiensis R12 by one-step under room temperature. In comparison with chemically synthesized AgNPs, the biosynthesized AgNPs presented fascinating antibacterial activity and peroxidase-like properties, which endowed it with the capability to catalyze the decomposition of H2O2 to generate hydroxyl radical. After the combination of R12-AgNPs and H2O2, an excellent synergistic bacteriostatic activity was observed for both Escherichia coli and Staphylococcus aureus, especially at low concentrations. In addition, in vitro cytotoxicity tests showed R12-AgNPs had good biocompatibility. Thus, this work presents a novel antibacterial agent that exhibits favorable synergistic antibacterial activity and low toxicity, without the use of antibiotics or a complicated synthesis process.


Assuntos
Antibacterianos , Deinococcus , Escherichia coli , Peróxido de Hidrogênio , Nanopartículas Metálicas , Prata , Staphylococcus aureus , Antibacterianos/farmacologia , Antibacterianos/química , Prata/química , Prata/farmacologia , Deinococcus/efeitos dos fármacos , Nanopartículas Metálicas/química , Peróxido de Hidrogênio/farmacologia , Escherichia coli/efeitos dos fármacos , Staphylococcus aureus/efeitos dos fármacos , Testes de Sensibilidade Microbiana , Sinergismo Farmacológico , Peroxidase/metabolismo , Humanos
18.
J Affect Disord ; 356: 323-328, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614443

RESUMO

BACKGROUND: Relative fat mass (RFM) is a novel indicator for measuring body fat. The relationship between RFM and depression was explored using National Health and Nutrition Examination Survey (NHANES) data from 2005 to 2018. METHODS: A general statistical description of the population included in the study was performed, and logistic analyses were used to explore the association between body mass index (BMI), waist circumference (WC), RFM and depression. Sensitivity analyses and restricted cubic spline (RCS) were also conducted to investigate the association between RFM and depression. RESULTS: A total of 28,836 participants were included in the study. In multivariate models, all obesity indices were associated with depression (P < 0.001). An increase of 1 SD in BMI, WC, and RFM was associated with a respective increased risk of depression of 2.3 %, 1.0 %, and 3.3 %. Excluding those taking antidepressants, the risk of depression was OR 1.88 (95 % CI: 1.26-2.79) for those with RFM in the highest quartile compared with those in the lowest quartile. After Inverse probability of weighting (IPW), the risk of depression in individuals with RFM in the highest quartile compared with individuals in the lowest quartile was 2.62 (95 % CI: 2.21-3.09). The RCS showed a possible nonlinear relationship between RFM and depression. CONCLUSIONS: RFM is associated with depression, suggesting that attention to RFM may be helpful for depression research.


Assuntos
Índice de Massa Corporal , Depressão , Inquéritos Nutricionais , Obesidade , Circunferência da Cintura , Humanos , Feminino , Masculino , Pessoa de Meia-Idade , Adulto , Depressão/epidemiologia , Obesidade/epidemiologia , Tecido Adiposo , Estudos Transversais , Fatores de Risco , Idoso , Adulto Jovem
19.
Cytometry B Clin Cytom ; 106(3): 181-191, 2024 05.
Artigo em Inglês | MEDLINE | ID: mdl-38535092

RESUMO

BACKGROUND: Measurable residual disease (MRD) is an important prognostic indicator of chronic lymphocytic leukemia (CLL). Different flow cytometric panels have been developed for the MRD assessment of CLL in Western countries; however, the application of these panels in China remains largely unexplored. METHODS: Owing to the requirements for high accuracy, reproducibility, and comparability of MRD assessment in China, we investigated the performance of a flow cytometric approach (CD45-ROR1 panel) to assess MRD in patients with CLL. The European Research Initiative on CLL (ERIC) eight-color panel was used as the "gold standard." RESULTS: The sensitivity, specificity, and concordance rate of the CD45-ROR1 panel in the MRD assessment of CLL were 100% (87/87), 88.5% (23/26), and 97.3% (110/113), respectively. Two of the three inconsistent samples were further verified using next-generation sequencing. In addition, the MRD results obtained from the CD45-ROR1 panel were positively associated with the ERIC eight-color panel results for MRD assessment (R = 0.98, p < 0.0001). MRD detection at low levels (≤1.0%) demonstrated a smaller difference between the two methods (bias, -0.11; 95% CI, -0.90 to 0.68) than that at high levels (>1%). In the reproducibility assessment, the bias was smaller at three data points (within 24, 48, and 72 h) in the CD45-ROR1 panel than in the ERIC eight-color panel. Moreover, MRD levels detected using the CD45-ROR1 panel for the same samples from different laboratories showed a strong statistical correlation (R = 0.99, p < 0.0001) with trivial interlaboratory variation (bias, 0.135; 95% CI, -0.439 to 0.709). In addition, the positivity rate of MRD in the bone marrow samples was higher than that in the peripheral blood samples. CONCLUSIONS: Collectively, this study demonstrated that the CD45-ROR1 panel is a reliable method for MRD assessment of CLL with high sensitivity, reproducibility, and reliability.


Assuntos
Citometria de Fluxo , Leucemia Linfocítica Crônica de Células B , Antígenos Comuns de Leucócito , Neoplasia Residual , Humanos , Leucemia Linfocítica Crônica de Células B/diagnóstico , Leucemia Linfocítica Crônica de Células B/patologia , Leucemia Linfocítica Crônica de Células B/sangue , Citometria de Fluxo/métodos , Neoplasia Residual/diagnóstico , Neoplasia Residual/patologia , Pessoa de Meia-Idade , Antígenos Comuns de Leucócito/análise , Masculino , Feminino , Idoso , Reprodutibilidade dos Testes , Imunofenotipagem/métodos , Adulto , Sensibilidade e Especificidade , Idoso de 80 Anos ou mais
20.
Carbohydr Polym ; 332: 121884, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38431405

RESUMO

The global healthcare challenge posed by COVID-19 necessitates the continuous exploration for novel antiviral agents. Fucoidans have demonstrated antiviral activity. However, the underlying structure-activity mechanism responsible for the inhibitory activity of fucoidans from Ascophyllum nodosum (FUCA) and Undaria pinnatifida (FUCU) against SARS-CoV-2 remains unclear. FUCA was characterized as a homopolymer with a backbone structure of repeating (1 â†’ 3) and (1 â†’ 4) linked α-l-fucopyranose residues, whereas FUCU was a heteropolysaccharide composed of Fuc1-3Gal1-6 repeats. Furthermore, FUCA demonstrated significantly higher anti-SARS-CoV-2 activity than FUCU (EC50: 48.66 vs 69.52 µg/mL), suggesting the degree of branching rather than sulfate content affected the antiviral activity. Additionally, FUCA exhibited a dose-dependent inhibitory effect on ACE2, surpassing the inhibitory activity of FUCU. In vitro, both FUCA and FUCU treatments downregulated the expression of pro-inflammatory cytokines (IL-6, IFN-α, IFN-γ, and TNF-α) and anti-inflammatory cytokines (IL-10 and IFN-ß) induced by viral infection. In hamsters, FUCA demonstrated greater effectiveness in attenuating lung and gastrointestinal injury and reducing ACE2 expression, compared to FUCU. Analysis of the 16S rRNA gene sequencing revealed that only FUCU partially alleviated the gut microbiota dysbiosis caused by SARS-CoV-2. Consequently, our study provides a scientific basis for considering fucoidans as poteintial prophylactic food components against SARS-CoV-2.


Assuntos
Ascophyllum , COVID-19 , Algas Comestíveis , Polissacarídeos , Undaria , Humanos , Ascophyllum/química , Enzima de Conversão de Angiotensina 2 , SARS-CoV-2 , RNA Ribossômico 16S , Undaria/química , Citocinas , Inflamação , Antivirais/farmacologia , Antivirais/uso terapêutico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA