Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 306
Filtrar
1.
Environ Int ; 187: 108737, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38735075

RESUMO

DNA methylation is well-accepted as a bridge to unravel the complex interplay between genome and environmental exposures, and its alteration regulated the cellular metabolic responses towards pollutants. However, the mechanism underlying site-specific aberrant DNA methylation and metabolic disorders under pollutant stresses remained elusive. Herein, the multilevel omics interferences of sulfonamides (i.e., sulfadiazine and sulfamerazine), a group of antibiotics pervasive in farmland soils, towards rice in 14 days of 1 mg/L hydroponic exposure were systematically evaluated. Metabolome and transcriptome analyses showed that 57.1-71.4 % of mono- and disaccharides were accumulated, and the differentially expressed genes were involved in the promotion of sugar hydrolysis, as well as the detoxification of sulfonamides. Most differentially methylated regions (DMRs) were hypomethylated ones (accounting for 87-95 %), and 92 % of which were located in the CHH context (H = A, C, or T base). KEGG enrichment analysis revealed that CHH-DMRs in the promoter regions were enriched in sugar metabolism. To reveal the significant hypomethylation of CHH, multi-spectroscopic and thermodynamic approaches, combined with molecular simulation were conducted to investigate the molecular interaction between sulfonamides and DNA in different sequence contexts, and the result demonstrated that sulfonamides would insert into the minor grooves of DNA, and exhibited a stronger affinity with the CHH contexts of DNA compared to CG or CHG contexts. Computational modeling of DNA 3D structures further confirmed that the binding led to a pitch increase of 0.1 Å and a 3.8° decrease in the twist angle of DNA in the CHH context. This specific interaction and the downregulation of methyltransferase CMT2 (log2FC = -4.04) inhibited the DNA methylation. These results indicated that DNA methylation-based assessment was useful for metabolic toxicity prediction and health risk assessment.


Assuntos
Metilação de DNA , Oryza , Sulfonamidas , Metilação de DNA/efeitos dos fármacos , Oryza/genética , Oryza/metabolismo , Sulfonamidas/toxicidade , Metabolismo dos Carboidratos/efeitos dos fármacos , Poluentes do Solo/toxicidade
2.
Environ Pollut ; 353: 124162, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38754691

RESUMO

Polybrominated diphenyl ethers (PBDEs) in soils posed potential risks to crop growth and food safety due to their prevalence and persistence. PBDEs were capable of being absorbed and accumulated into crops, impacting their growth, whereas the interference on metabolic components and nutritional composition deserves further elucidation. This study integrated a combined non-targeted and targeted metabolomics method to explore the influences of 2,2',4,4'-tetrabromodiphenyl ether (BDE-47), 2,2',4,4',5-pentabromodiphenyl ether (BDE-99) and decabromodiphenyl ether (BDE-209) on the metabolic responses of rice (Oryza sativa). Metabolic pathways, which were associated with sugars, organic acids, and amino acids, were significantly disturbed under PBDE stresses. Particularly, 75% of the marked altered pathways belonged to amino acid metabolism, with alanine/aspartate/glutamate metabolism being commonly enhanced. The degradation of aspartic acid promoted the formation of downstream amino acids, among which the levels of lysine, methionine, isoleucine, and asparagine were increased by 1.31-3.15 folds compared to the control. Thus, the antioxidant capacity in rice plants was enhanced, particularly through the significant promotion of ascorbic acid-glutathione (AsA-GSH) cycle in rice leaves. The amino acids were promoted to resist reactive oxygen species (ROS) efficiently, thus were deficient for nutrient storage. When exposed to 4 µmol/kg PBDEs, the contents of amino acids and proteins in grains decreased by 9.1-32.1% and 8.6-34.8%, respectively. In particular, glutelin level was decreased by 5.6-41.2%, resulting in a decline in nutritional quality. This study demonstrated that PBDEs deteriorated the protein nutrition in rice grains by affecting amino acid metabolism, providing a new perspective for evaluating the ecological risks of PBDEs and securing agricultural products.

3.
J Hazard Mater ; 471: 134443, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38678701

RESUMO

In-situ chemical oxidation is an important approach to remediate soils contaminated with persistent organic pollutants, e.g., polycyclic aromatic hydrocarbons (PAHs). However, massive oxidants are added into soils without an explicit model for predicting the redox potential (Eh) during soil remediation, and overdosed oxidants would pose secondary damage by disturbing soil organic matter and acidity. Here, a soil redox potential (Eh) model was first established to quantify the relationship among oxidation parameters, crucial soil properties, and pollutant elimination. The impacts of oxidant types and doses, soil pH, and soil organic carbon contents on soil Eh were systematically clarified in four commonly used oxidation systems (i.e., KMnO4, H2O2, fenton, and persulfate). The relative error of preliminary Eh model was increased from 48-62% to 4-16% after being modified with the soil texture and dissolved organic carbon, and this high accuracy was verified by 12 actual PAHs contaminated soils. Combining the discovered critical oxidation potential (COP) of PAHs, the moderate oxidation process could be regulated by the guidance of the soil Eh model in different soil conditions. Moreover, the product analysis revealed that the hydroxylation of PAHs occurred most frequently when the soil Eh reached their COP, providing a foundation for further microorganism remediation. These results provide a feasible strategy for selecting oxidants and controlling their doses toward moderate oxidation of contaminated soils, which will reduce the consumption of soil organic matter and protect the main structure and function of soil for future utilization. ENVIRONMENTAL IMPLICATIONS: This study provides a novel insight into the moderate chemical oxidation by the Eh model and largely reduces the secondary risks of excessive oxidation and oxidant residual in ISCO. The moderate oxidation of PAHs could be a first step to decrease their toxicity and increase their bioaccessibility, favoring the microbial degradation of PAHs. Controlling the soil Eh with the established model here could be a promising approach to couple moderate oxidation of organic contaminants with microbial degradation. Such an effective and green soil remediation will largely preserve the soil's functional structure and favor the subsequent utilization of remediated soil.

4.
Sci Total Environ ; 929: 172636, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38653418

RESUMO

Vegetables capture antibiotic resistance genes (ARGs) from the soil and then pass them on to consumers through the delivery chain and food chain, and are therefore the key node that may increase the risk of human exposure to ARGs. This study investigates the patterns and driving forces behind the transmission of ARGs from soil to vegetables by the commonly planted cash crops in the coastal region of southern China, i.e. broccoli, pumpkin, and broad bean, to investigate. The study used metagenomic data to reveal the microbial and ARGs profiles of various vegetables and the soil they are grown. The results indicate significant differences in the accumulation of ARGs among different vegetables harvested in the same area at the same time frame, and the ARGs accumulation ability of the three vegetables was in the order of broccoli, broad bean, and pumpkin. In addition, broccoli collected the highest number of ARGs in types (n = 14), while pumpkin (n = 13) does not obtain trimethoprim resistance genes and broad beans (n = 10) do not obtain chloramphenicol, fosmidomycin, quinolone, rifamycin, or trimethoprim resistance genes. Host tracking analysis shows a strong positive correlation (|rho| > 0.8, p < 0.05) between enriched ARGs and plant companion microbes. Enrichment analysis of metabolic pathways of companion microbes shows that vegetables exhibit a discernible enrichment of companion microbes, with significant differences among vegetables. This phenomenon is primarily due to the screening of carbohydrate metabolism capabilities among companion microbes and leads varied patterns of ARGs that spread from the soil to vegetables. This offers a novel insight into the intervention of foodborne transmission of ARGs.


Assuntos
Resistência Microbiana a Medicamentos , Microbiologia do Solo , Verduras , China , Resistência Microbiana a Medicamentos/genética , Antibacterianos , Brassica/microbiologia , Brassica/genética
5.
Sci Total Environ ; 929: 172439, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38621540

RESUMO

Biochar and soil carbon sequestration hold promise in mitigating global warming by storing carbon in the soil. However, the interaction between biochar properties, soil carbon-nitrogen cycling, and nitrogen fertilizer application's impact on soil carbon-nitrogen balance remained unclear. Herein, we conducted batch experiments to study the effects and mechanisms of rice straw biochar application (produced at 300, 500, and 700 °C) on net greenhouse gas emissions (CO2, N2O, CH4) in upland soils under different forms of nitrogen fertilizers. The findings revealed that (NH4)2SO4 and urea significantly elevated soil carbon dioxide equivalent emissions, ranging from 28 to 61.7 kg CO2e/ha and 8.2 to 37.7 kg CO2e/ha, respectively. Conversely, KNO3 reduced soil CO2e emissions, ranging from 2.2 to 13.6 kg CO2e/ha. However, none of these three nitrogen forms exhibited a significant effect on CH4 emissions. The pyrolysis temperature of biochar was found negatively correlated with soil CO2 and N2O emissions. The alkaline substances presented in biochar pyrolyzed at 500-700 °C raised soil pH, increased the ratio of Gram-negative to Gram-positive bacteria, and enhanced the relative abundance of Sphingomonadaceae. Moreover, the co-application of KNO3 based nitrogen fertilizer and biochar increased the total carbon/inorganic nitrogen ratio and reduces the relative abundance of Nitrospirae. This series of reactions led to a significant increase in soil DOC content, meanwhile reduced soil CO2 emissions, and inhibited the nitrification process and decreased the emission of soil N2O. This study provided a scientific basis for the rational application of biochar in soil.


Assuntos
Dióxido de Carbono , Carvão Vegetal , Fertilizantes , Nitrogênio , Óxido Nitroso , Solo , Carvão Vegetal/química , Fertilizantes/análise , Solo/química , Óxido Nitroso/análise , Nitrogênio/análise , Dióxido de Carbono/análise , Poluentes Atmosféricos/análise , Gases de Efeito Estufa/análise , Agricultura/métodos
6.
Sci Total Environ ; 927: 172438, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38614354

RESUMO

Soil vapor extraction (SVE) was a cost-effective technology for remediating volatile and semi-volatile organic contaminated soils. Many factors, including SVE parameters, soil properties, and contaminant characteristics, significantly influenced the remediation efficiency of SVE. The optimal conditions for organic pollutants removal efficiency were site-specific and varied among studies. Therefore, a generalized model was needed to predict the remediation efficiency of SVE in organic contaminated soils. This study employed machine learning to predict the removal efficiency of organic pollutants by SVE. The model's development was based on a trainset, and its predictive capabilities were evaluated using a testset. An XGBoost (XGB) model was derived from literature data (R2 = 0.9728). Time, pollutant type, and temperature were identified as the three most important features affecting SVE remediation efficiency. The accuracy (R2 = 0.9799) and universality of the model were enhanced through an optimization scheme. The developed XGB model demonstrated the ability to predict the removal efficiency of organic pollutants by considering all collected influential factors. The mechanism of multi-factor interaction on remediation efficiency was clarified. Overall, this study would contribute to evaluating the remediation potential of SVE for specific organic contaminated soils, aiding in maximizing the removal efficiency of organic pollutants under optimal conditions.

7.
J Environ Sci (China) ; 143: 23-34, 2024 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-38644020

RESUMO

Heavy metal(loid)s (HMs) pollution has become a common and complex problem in industrial parks due to rapid industrialization and urbanization. Here, soil and groundwater were sampled from a retired industrial park to investigate the pollution characteristics of HMs. Results show that Ni, Pb, Cr, Zn, Cd, and Cu were the typical HMs in the soil. Source analysis with the positive matrix factorization model indicates that HMs in the topsoil stemmed from industrial activities, traffic emission, and natural source, and the groundwater HMs originated from industrial activities, groundwater-soil interaction, groundwater-rock interaction, and atmosphere deposition. The sequential extraction of soil HMs reveals that As and Hg were mainly distributed in the residue fraction, while Ni, Pb, Cr, Zn, Cd, and Cu mainly existed in the mobile fraction. Most HMs either in the total concentration or in the bioavailable fraction preferred to retain in soil as indicated by their high soil-water partitioning coefficients (Kd), and the Kd values were correlated with soil pH, groundwater redox potential, and dissolved oxygen. The relative stable soil-groundwater circumstance and the low active fraction contents limited the vertical migration of soil HMs and their release to groundwater. These findings increase our knowledge about HMs pollution characteristics of traditional industrial parks and provide a protocol for HMs pollution scrutinizing in large zones.


Assuntos
Monitoramento Ambiental , Água Subterrânea , Metais Pesados , Poluentes do Solo , Solo , Poluentes Químicos da Água , Metais Pesados/análise , Água Subterrânea/química , Água Subterrânea/análise , Poluentes do Solo/análise , Poluentes Químicos da Água/análise , Solo/química , China
8.
Environ Pollut ; 346: 123667, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38428795

RESUMO

Thermal desorption (TD) remediation of polycyclic aromatic hydrocarbon (PAH)-contaminated sites is known for its high energy consumption and cost implications. The key to solving this issue lies in analyzing the PAHs desorption process, defining remediation endpoints, and developing prediction models to prevent excessive remediation. Establishing an accurate prediction model for remediation efficiency, which involves a systematic consideration of soil properties, TD parameters, and PAH characteristics, poses a significant challenge. This study employed a machine learning approach for predicting the remediation efficiency based on batch experiment results. The results revealed that the extreme gradient boosting (XGB) model yielded the most accurate predictions (R2 = 0.9832). The importance of features in the prediction process was quantified. A model optimization scheme was proposed, which involved integrating features based on their relevance, importance, and partial dependence. This integration not only reduced the number of input features but also enhanced prediction accuracy (R2 = 0.9867) without eliminating any features. The optimized XGB model was validated using soils from sites, demonstrating a prediction error of less than 30%. The optimized XGB model aids in identifying the most optimal conditions for thermal desorption to maximize the remediation efficiency of PAH-contaminated sites under relative cost and energy-saving conditions.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Poluentes do Solo , Poluentes do Solo/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Solo , Biodegradação Ambiental
9.
J Hazard Mater ; 469: 134057, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38508108

RESUMO

The extensive consumption of antibiotics has been reported to significantly promote the generation of antibiotic resistance (ABR), however, a quantitative causal relationship between antibiotic exposure and ABR response is absent. This study aimed to pinpoint the accurate regulatory concentration of fluoroquinolones (FQs) and to understand the biochemical mechanism of the mutual action between FQ exposure and FQ resistance response. Highly sensitive analytical methods were developed by using UPLC-MS/MS to determine the total residual, extracellular residual, total intracellular, intracellular residual and intracellular degraded concentration of three representative FQs, including ciprofloxacin (CIP), ofloxacin (OFL) and norfloxacin (NOR), with detection limits in the range of 0.002-0.057 µg/L, and recoveries in the range of 80-93%. The MICs of Escherichia coli (E. coli) were 7.0-31.4-fold of the respective MIC0 after 40-day FQ exposure, and significant negative associations were discovered between the intracellular (residual, degraded or the sum) FQ concentrations and FQ resistance. Transcriptional expression and whole-genome sequencing results indicated that reduced membrane permeability and enhanced multi-drug efflux pumps contributed to the decreasing intracellular concentration. These results unveiled the pivotal role of intracellular concentration in triggering FQ resistance, providing important information to understand the dose-response relationship between FQ exposure and FQ resistance response, and ascertain the target dose metric of FQs for eliminating FQ resistance crisis.


Assuntos
Escherichia coli , Fluoroquinolonas , Fluoroquinolonas/farmacologia , Fluoroquinolonas/química , Escherichia coli/metabolismo , Cromatografia Líquida , Farmacorresistência Bacteriana , Espectrometria de Massas em Tandem , Antibacterianos/química , Testes de Sensibilidade Microbiana
10.
Water Res ; 252: 121235, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38310801

RESUMO

Cephalosporins have been widely applied in clinical and veterinary settings and detected at increasing concentrations in water environments. They potentially induce high-level antibiotic resistance at environmental concentrations. This study characterized how typical wastewater bacteria developed heritable antibiotic resistance under exposure to different cephalosporins, including pharmacophore-resistance correlation, resistance mechanism, and occurrence of resistance-relevant mutations in different water environments. Wastewater-isolated E. coli JX1 was exposed to eight cephalosporins individually at 25 µg/L for 60 days. Multidrug resistance developed and diverse mutations arose in selected mutants, where a single mutation in ATP phosphoribosyltransferase encoding gene (hisG) resulted in up to 128-fold increase in resistance to meropenem. Molprint2D pharma RQSAR analysis revealed that hydrogen-bond acceptors and hydrophobic groups in the R1 and R2 substituents of cephalosporins contributed positively to antibiotic resistance. Some of these pharmacophores may persist during bio- or photo-degradation in the environment. hisG mutation confers a novel resistance mechanism by inhibiting fatty acid degradation, and its variants were more abundant in water-related E. coli (especially in the effluent of wastewater treatment plants) compared with those in non-water environments. These results suggest that specific degradation of particular pharmacophores in cephalosporins could be useful for controlling resistance development, and mutations in previously unreported resistance genes (e.g., hisG) can lead to overlooked antibiotic resistance risks in water environments.


Assuntos
Cefalosporinas , Águas Residuárias , Cefalosporinas/farmacologia , Escherichia coli , Farmacóforo , Antibacterianos/farmacologia , Antibacterianos/análise , Mutação , Água/análise
11.
Sci Total Environ ; 918: 170857, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38340847

RESUMO

Sulfonamide antibiotics, extensively used in human and veterinary therapy, accumulate in agroecosystem soils through livestock manure and sewage irrigation. However, the interaction between sulfonamides and rice plants remains unclear. This study investigated the transformation behavior and toxicity of sulfamethoxazole (SMX) and its main metabolite, N4-acetyl-sulfamethoxazole (NASMX) in rice. SMX and NASMX were rapidly taken up by roots and translocated acropetally. NASMX showed higher accumulating capacity, with NASMX concentrations up to 20.36 ± 1.98 µg/g (roots) and 5.62 ± 1.17 µg/g (shoots), and with SMX concentrations up to 15.97 ± 2.53 µg/g (roots) and 3.22 ± 0.789 µg/g (shoots). A total of 18 intermediate transformation products of SMX were identified by nontarget screening using Orbitrap-HRMS, revealing pathways such as deamination, hydroxylation, acetylation, formylation, and glycosylation. Notably, NASMX transformed back into SMX in rice, a novel finding. Transcriptomic analysis highlights the involvements of cytochrome P450 (CYP450), acetyltransferase (ACEs) and glycosyltransferases (GTs) in these biotransformation pathways. Moreover, exposure to SMX and NASMX disrupts TCA cycle, amino acid, linoleic acid, nucleotide metabolism, and phenylpropanoid biosynthesis pathways of rice, with NASMX exerting a stronger impact on metabolic networks. These findings elucidate the sulfonamides' metabolism, phytotoxicity mechanisms, and contribute to assessing food safety and human exposure risk amid antibiotic pollution.


Assuntos
Oryza , Sulfametoxazol , Humanos , Sulfametoxazol/toxicidade , Sulfametoxazol/química , Oryza/metabolismo , Antibacterianos/química , Sulfonamidas , Solo/química , Sulfanilamida
12.
Proc Natl Acad Sci U S A ; 121(4): e2309102121, 2024 Jan 23.
Artigo em Inglês | MEDLINE | ID: mdl-38232287

RESUMO

Nonradicals are effective in selectively degrading electron-rich organic contaminants, which unfortunately suffer from unsatisfactory yield and uncontrollable composition due to the competitive generation of radicals. Herein, we precisely construct a local microenvironment of the carbon nitride-supported high-loading (~9 wt.%) Fe single-atom catalyst (Fe SAC) with sulfur via a facile supermolecular self-assembly strategy. Short-distance S coordination boosts the peroxymonosulfate (PMS) activation and selectively generates high-valent iron-oxo species (FeIV=O) along with singlet oxygen (1O2), significantly increasing the 1O2 yield, PMS utilization, and p-chlorophenol reactivity by 6.0, 3.0, and 8.4 times, respectively. The composition of nonradicals is controllable by simply changing the S content. In contrast, long-distance S coordination generates both radicals and nonradicals, and could not promote reactivity. Experimental and theoretical analyses suggest that the short-distance S upshifts the d-band center of the Fe atom, i.e., being close to the Fermi level, which changes the binding mode between the Fe atom and O site of PMS to selectively generate 1O2 and FeIV=O with a high yield. The short-distance S-coordinated Fe SAC exhibits excellent application potential in various water matrices. These findings can guide the rational design of robust SACs toward a selective and controllable generation of nonradicals with high yield and PMS utilization.

13.
Environ Microbiol ; 26(1): e16577, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38183371

RESUMO

Cell surface hydrophobicity (CSH) dominates the interactions between rhizobacteria and pollutants at the soil-water interface, which is critical for understanding the dissipation of pollutants in the rhizosphere microzone of rice. Herein, we explored the effects of self-adaptive CSH of Sphingomonas sp. strain PAH02 on the translocation and biotransformation behaviour of cadmium-phenanthrene (Cd-Phe) co-pollutant in rice and rhizosphere microbiome. We evidenced that strain PAH02 reduced the adsorption of Cd-Phe co-pollutant on the rice root surface while enhancing the degradation of Phe and adsorption of Cd via its self-adaptive CSH in the hydroponic experiment. The significant upregulation of key protein expression levels such as MerR, ARHDs and enoyl-CoA hydratase/isomerase, ensures self-adaptive CSH to cope with the stress of Cd-Phe co-pollutant. Consistently, the bioaugmentation of strain PAH02 promoted the formation of core microbiota in the rhizosphere soil of rice (Oryza sativa L.), such as Bradyrhizobium and Streptomyces and induced gene enrichment of CusA and PobA that are strongly associated with pollutant transformation. Consequently, the contents of Cd and Phe in rice grains at maturity decreased by 17.2% ± 0.2% and 65.7% ± 0.3%, respectively, after the bioaugmentation of strain PAH02. These findings present new opportunities for the implementation of rhizosphere bioremediation strategies of co-contaminants in paddy fields.


Assuntos
Poluentes Ambientais , Oryza , Fenantrenos , Poluentes do Solo , Sphingomonas , Cádmio/metabolismo , Oryza/metabolismo , Poluentes Ambientais/metabolismo , Sphingomonas/genética , Sphingomonas/metabolismo , Proteômica , Poluentes do Solo/metabolismo , Fenantrenos/metabolismo , Solo , Rizosfera
14.
Environ Pollut ; 344: 123436, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38281573

RESUMO

Environmental pollutants interfere with plant photosynthesis, thus reduce the crop yield and carbon storage capacity of farmland. This study comparatively explored the effects and mechanisms of polycyclic aromatic hydrocarbons (PAHs, e.g., phenanthrene, pyrene, and benzo[a]pyrene) and cadmium (Cd) on the carbon fixation capacity of rice throughout the growth period. Cd posed severer inhibition on the net carbon fixation of rice than PAHs, with the inhibition rates of 1.40-14.8-fold over PAHs at the concentrations of 0.5 or 5 mg/kg soil. Ribulose diphosphate carboxylase/oxygenase (Rubisco) involved in the Calvin cycle was identified as the common target of these pollutants to inhibit the photosynthetic carbon fixation. Further investigation demonstrated that the different inhibitory effects of Cd and PAHs was resulted from their different interference on the dual catalysis function (carboxylation and oxygenation) of Rubisco. Cd disturbed the balance of the intercellular CO2/O2, thus promoting the oxygenation and inhibiting the carboxylation of the substrate of Rubisco. Under the stress of Cd, the downstream metabolites (e.g. glycolate, glyoxylate, and serine) of Rubisco oxygenation were upregulated by over 2.01-3.24-fold, whereas the carboxylation efficiency (Vcmax) was decreased by 5.58-29.3%. Comparatively, PAHs inhibited both the carboxylation and oxygenation by down-regulating the expression of Rubisco coding gene (OsRBCS2, Log2FC < -2). This study broadens the understanding of the mechanisms of different environmental pollutants on the carbon fixation, providing valuable information for the quantitative estimation of their impacts on the farmland carbon sink. The results would be constructive to develop strategies for eliminating the adverse effects of contaminants and assist the carbon-neutral programs.


Assuntos
Poluentes Ambientais , Oryza , Hidrocarbonetos Policíclicos Aromáticos , Cádmio/farmacologia , Oryza/metabolismo , Ribulose-Bifosfato Carboxilase/metabolismo , Fotossíntese , Carbono/metabolismo , Ciclo do Carbono , Poluentes Ambientais/farmacologia , Dióxido de Carbono/metabolismo
15.
Environ Sci Technol ; 58(1): 510-521, 2024 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-38100654

RESUMO

Fluorinated liquid crystal monomers (FLCMs) have been suggested as emerging contaminants, raising global concern due to their frequent occurrence, potential toxic effects, and endurance capacity in the environment. However, the environmental fate of the FLCMs remains unknown. To fill this knowledge gap, we investigated the aerobic microbial transformation mechanisms of an important FLCM, 4-[difluoro(3,4,5-trifluorophenoxy)methyl]-3, 5-difluoro-4'-propylbiphenyl (DTMDPB), using an enrichment culture termed as BG1. Our findings revealed that 67.5 ± 2.1% of the initially added DTMDPB was transformed in 10 days under optimal conditions. A total of 14 microbial transformation products obtained due to a series of reactions (e.g., reductive defluorination, ether bond cleavage, demethylation, oxidative hydroxylation and aromatic ring opening, sulfonation, glucuronidation, O-methylation, and thiolation) were identified. Consortium BG1 harbored essential genes that could transform DTMDPB, such as dehalogenation-related genes [e.g., glutathione S-transferase gene (GST), 2-haloacid dehalogenase gene (2-HAD), nrdB, nuoC, and nuoD]; hydroxylating-related genes hcaC, ubiH, and COQ7; aromatic ring opening-related genes ligB and catE; and methyltransferase genes ubiE and ubiG. Two DTMDPB-degrading strains were isolated, which are affiliated with the genus Sphingopyxis and Agromyces. This study provides a novel insight into the microbial transformation of FLCMs. The findings of this study have important implications for the development of bioremediation strategies aimed at addressing sites contaminated with FLCMs.


Assuntos
Cristais Líquidos , Biodegradação Ambiental , Hidroxilação
16.
J Environ Sci (China) ; 139: 428-445, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38105066

RESUMO

Global environmental concern over organic contaminated sites has been progressively conspicuous during the process of urbanization and industrial restructuring. While traditional physical or chemical remediation technologies may significantly destroy the soil structure and function, coupling moderate chemical degradation with microbial remediation becomes a potential way for the green, economic, and efficient remediation of contaminated sites. Hence, this work systematically elucidates why and how to couple chemical technology with microbial remediation, mainly focused on the controllable redox reactions of organic contaminants. The rational design of materials structure, selective generation of reactive oxygen species, and estimation of degradation pathway are described for chemical oxidation. Meanwhile, current progress on efficient and selective reductions of organic contaminants (i.e., dechlorination, defluorination, -NO2 reduction) is introduced. Combined with the microbial remediation of contaminated sites, several consideration factors of how to couple chemical and microbial remediation are proposed based on both fundamental and practical points of view. This review will advance the understanding and development of chemical-microbial coupled remediation for organic contaminated sites.


Assuntos
Recuperação e Remediação Ambiental , Poluentes do Solo , Gerenciamento de Resíduos , Oxirredução , Poluentes do Solo/análise , Solo
17.
Environ Sci Technol ; 58(2): 1338-1348, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-38157442

RESUMO

The widespread utilization of tetracyclines (TCs) in agriculture and medicine has led to the borderless spread of tetracycline resistance in humans, animals, and the environment, posing huge risks to both the ecosystem and human society. Changes in the functional group modifications resulted in a higher bacteriostatic efficacy of the new generation of TCs, but their effect on the emergence and evolution of antibiotic resistance genes (ARGs) is not yet known. To this end, four TCs from three generations were chosen to compare their structural effects on influencing the evolution of ARGs in soil microbial communities. The findings revealed that low-generation TCs, such as tetracycline and oxytetracycline, exhibited a greater propensity to stimulate the production and proliferation of ARGs than did high-generation tigecycline. Molecular docking analysis demonstrated that modifications of the D-ring functional group determined the binding capacity of TCs to the substrate-binding pocket of transcriptional regulators and efflux pumps mainly involved in drug resistance. This can be further evidenced by reverse transcription-quantitative polymerase chain reaction quantification and intracellular antibiotic accumulation assessment. This study sheds light on the mechanism of the structural effect of antibiotic-induced ARG production from the perspective of compound-protein binding, therefore providing theoretical support for controlling the dissemination of antibiotic resistance.


Assuntos
Microbiota , Tetraciclinas , Animais , Humanos , Tetraciclinas/farmacologia , Tetraciclinas/análise , Simulação de Acoplamento Molecular , Genes Bacterianos , Antibacterianos/farmacologia , Solo/química , Microbiologia do Solo
18.
Environ Sci Technol ; 57(50): 21405-21415, 2023 Dec 19.
Artigo em Inglês | MEDLINE | ID: mdl-38061893

RESUMO

The ubiquitous occurrence of benzotriazole ultraviolet stabilizers (BUVSs) in the environment and organisms has warned of their potential ecological and health risks. Studies showed that some BUVSs exerted immune and chronic toxicities to animals by disturbing signaling transduction, yet limited research has investigated the toxic effects on crop plants and the underlying mechanisms of signaling regulation. Herein, a laboratory-controlled hydroponic experiment was conducted on rice to explore the phytotoxicity of BUVSs by integrating conventional biochemical experiments, transcriptomic analysis, competitive sorption assays, and computational studies. The results showed that BUVSs inhibited the growth of rice by 6.30-20.4% by excessively opening the leaf stomas, resulting in increased transpiration. BUVSs interrupted the transduction of abscisic acid (ABA) signal through competitively binding to Ca2+-dependent protein kinase (CDPK), weakening the CDPK phosphorylation and further inhibiting the downstream signaling. As structural analogues of ATP, BUVSs acted as potential ABA signaling antagonists, leading to physiological dysfunction in mediating stomatal closure under stresses. This is the first comprehensive study elucidating the effects of BUVSs on the function of key proteins and the associated signaling transduction in plants and providing insightful information for the risk evaluation and control of BUVSs.


Assuntos
Oryza , Animais , Proteínas Quinases , Raios Ultravioleta , Triazóis/farmacologia , Triazóis/análise , Plantas
19.
RSC Adv ; 13(51): 36467, 2023 Dec 08.
Artigo em Inglês | MEDLINE | ID: mdl-38099252

RESUMO

[This corrects the article DOI: 10.1039/D3RA03925K.].

20.
Environ Pollut ; 336: 122486, 2023 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-37669699

RESUMO

Sulfadiazine and its derivatives (sulfonamides, SAs) could induce distinct biotoxic, metabolic and physiological abnormalities, potentially due to their subtle structural differences. This study conducted an in-depth investigation on the interactions between SA homologues, i.e. sulfadiazine (SD), sulfamerazine (SD1), and sulfamethazine (SD2), and the key metabolic enzyme (glycosyltransferase, GT) in rice (Oryza sativa L.). Untargeted screening of SA metabolites revealed that GT-catalyzed glycosylation was the primary transformation pathway of SAs in rice. Molecular docking identified that the binding sites of SAs on GT (D0TZD6) were responsible for transferring sugar moiety to synthesize polysaccharides and detoxify SAs. Specifically, amino acids in the GT-binding cavity (e.g., GLY487 and CYS486) formed stable hydrogen bonds with SAs (e.g., the sulfonamide group of SD). Molecular dynamics simulations revealed that SAs induced conformational changes in GT ligand binding domain, which was supported by the significantly decreased GT activity and gene expression level. As evidenced by proteomics and metabolomics, SAs inhibited the transfer and synthesis of sugar but stimulated sugar decomposition in rice leaves, leading to the accumulation of mono- and disaccharides in rice leaves. While the differences in the increased sugar content by SD (24.3%, compared with control), SD1 (11.1%), and SD2 (6.24%) can be attributed to their number of methyl groups (0, 1, 2, respectively), which determined the steric hindrance and hydrogen bonds formation with GT. This study suggested that the disturbances on crop sugar metabolism by homologues contaminants are determined by the interaction between the contaminants and the target enzyme, and are greatly dependent on the steric hindrance effects contributed by their side chains. The results are of importance to identify priority pollutants and ensure crop quality in contaminated fields.


Assuntos
Doenças Metabólicas , Oryza , Oryza/metabolismo , Glicosiltransferases/genética , Glicosiltransferases/metabolismo , Glicosiltransferases/farmacologia , Simulação de Acoplamento Molecular , Sulfanilamida/metabolismo , Sulfanilamida/farmacologia , Sulfadiazina/metabolismo , Sulfonamidas/metabolismo , Açúcares
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA