Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 95
Filtrar
1.
Hepatol Commun ; 8(7)2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38934703

RESUMO

BACKGROUND: The incidence of gallbladder diseases is as high as 20%, but whether gallbladder diseases contribute to hepatic disorders remains unknown. METHODS: Here, we established an animal model of gallbladder dysfunction and assessed the role of a diseased gallbladder in cholestasis-induced hepatic fibrosis (CIHF). RESULTS: Mice with smooth muscle-specific deletion of Mypt1, the gene encoding the main regulatory subunit of myosin light chain phosphatase (myosin phosphatase target subunit 1 [MYPT1]), had apparent dysfunction of gallbladder motility. This dysfunction was evidenced by abnormal contractile responses, namely, inhibited cholecystokinin 8-mediated contraction and nitric oxide-resistant relaxation. As a consequence, the gallbladder displayed impaired bile filling and biliary tract dilation comparable to the alterations in CIHF. Interestingly, the mutant animals also displayed CIHF features, including necrotic loci by the age of 1 month and subsequently exhibited progressive fibrosis and hyperplastic/dilated bile ducts. This pathological progression was similar to the phenotypes of the animal model with bile duct ligation and patients with CIHF. The characteristic biomarker of CIHF, serum alkaline phosphatase activity, was also elevated in the mice. Moreover, we observed that the myosin phosphatase target subunit 1 protein level was able to be regulated by several reagents, including lipopolysaccharide, exemplifying the risk factors for gallbladder dysfunction and hence CIHF. CONCLUSIONS: We propose that gallbladder dysfunction caused by myosin phosphatase target subunit 1 ablation is sufficient to induce CIHF in mice, resulting in impairment of the bile transport system.


Assuntos
Colestase , Modelos Animais de Doenças , Cirrose Hepática , Fosfatase de Miosina-de-Cadeia-Leve , Animais , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosfatase de Miosina-de-Cadeia-Leve/genética , Camundongos , Cirrose Hepática/fisiopatologia , Cirrose Hepática/genética , Colestase/complicações , Doenças da Vesícula Biliar/genética , Doenças da Vesícula Biliar/fisiopatologia , Doenças da Vesícula Biliar/patologia , Vesícula Biliar/patologia , Vesícula Biliar/fisiopatologia , Masculino , Camundongos Knockout
2.
Histol Histopathol ; : 18682, 2023 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-38059279

RESUMO

AIMS: To investigate the clinicopathological characteristics and potential diagnostic pitfalls of bronchiolar adenoma (BA) combined with lung adenocarcinoma (LUAD) in the same lesion. METHODS: We analyzed eight cases of BA combined with LUAD from our hospital pathology department between July 2020 and January 2022, and summarized their clinical data, radiological features, histopathological characteristics and immunohistochemical phenotypes. RESULTS: Upon macroscopic examination, the lesions were characterized by gray-white or gray-brown solid nodules with well-defined borders, measuring 0.6-1.8cm in maximum diameter. The incidence of proximal-type BA (6/8) was higher than that of distal-type BA (2/8), and they combined with different stages of LUAD, including adenocarcinoma in situ, minimally invasive adenocarcinoma, invasive adenocarcinoma, and invasive mucinous adenocarcinoma (IMA). Immunohistochemistry showed that cytokeratin 5/6 and P40 were positive in the continuous basal cell layer in BA, but only scattered positive basal cells were seen at the junction of BA and LUAD. TTF-1 was positive in proximal-type BA ciliated cells in five cases and in LUAD cells in seven cases, and weakly positive in some basal cells. One case of IMA and mucinous cells of BA were TTF-1 negative. There was partially positive Napsin-A expression in BA luminal cells and LUAD cells of all cases except IMA. CONCLUSION: There is no obvious boundary when BA and LUAD are in the same lesion. The luminal epithelial cells in the area where the two components migrate toward each other are atypical and lack a continuous underlying basal cell layer. Microscopic diagnosis should be aided by immunohistochemistry.

3.
EMBO Mol Med ; 15(11): e17611, 2023 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-37691516

RESUMO

Cingulin (CGN) is a cytoskeleton-associated protein localized at the apical junctions of epithelial cells. CGN interacts with major cytoskeletal filaments and regulates RhoA activity. However, physiological roles of CGN in development and human diseases are currently unknown. Here, we report a multi-generation family presenting with autosomal dominant non-syndromic hearing loss (ADNSHL) that co-segregates with a CGN heterozygous truncating variant, c.3330delG (p.Leu1110Leufs*17). CGN is normally expressed at the apical cell junctions of the organ of Corti, with enriched localization at hair cell cuticular plates and circumferential belts. In mice, the putative disease-causing mutation results in reduced expression and abnormal subcellular localization of the CGN protein, abolishes its actin polymerization activity, and impairs the normal morphology of hair cell cuticular plates and hair bundles. Hair cell-specific Cgn knockout leads to high-frequency hearing loss. Importantly, Cgn mutation knockin mice display noise-sensitive, progressive hearing loss and outer hair cell degeneration. In summary, we identify CGN c.3330delG as a pathogenic variant for ADNSHL and reveal essential roles of CGN in the maintenance of cochlear hair cell structures and auditory function.


Assuntos
Surdez , Perda Auditiva , Animais , Humanos , Camundongos , Proteínas do Citoesqueleto , Surdez/genética , Células Ciliadas Auditivas/metabolismo , Audição/fisiologia , Perda Auditiva/genética , Perda Auditiva/metabolismo
4.
Nat Cell Biol ; 25(6): 848-864, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-37217599

RESUMO

Mitochondrial proteases are emerging as key regulators of mitochondrial plasticity and acting as both protein quality surveillance and regulatory enzymes by performing highly regulated proteolytic reactions. However, it remains unclear whether the regulated mitochondrial proteolysis is mechanistically linked to cell identity switching. Here we report that cold-responsive mitochondrial proteolysis is a prerequisite for white-to-beige adipocyte cell fate programming during adipocyte thermogenic remodelling. Thermogenic stimulation selectively promotes mitochondrial proteostasis in mature white adipocytes via the mitochondrial protease LONP1. Disruption of LONP1-dependent proteolysis substantially impairs cold- or ß3 adrenergic agonist-induced white-to-beige identity switching of mature adipocytes. Mechanistically, LONP1 selectively degrades succinate dehydrogenase complex iron sulfur subunit B and ensures adequate intracellular succinate levels. This alters the histone methylation status on thermogenic genes and thereby enables adipocyte cell fate programming. Finally, augmented LONP1 expression raises succinate levels and corrects ageing-related impairments in white-to-beige adipocyte conversion and adipocyte thermogenic capacity. Together, these findings reveal that LONP1 links proteolytic surveillance to mitochondrial metabolic rewiring and directs cell identity conversion during adipocyte thermogenic remodelling.


Assuntos
Adipócitos , Mitocôndrias , Adipócitos Marrons/metabolismo , Mitocôndrias/metabolismo , Peptídeo Hidrolases/metabolismo , Proteólise , Succinatos/metabolismo , Proteínas Mitocondriais/metabolismo
5.
Transl Stroke Res ; 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36843141

RESUMO

Cerebral small vessel disease (CSVD) is the most common progressive vascular disease that causes vascular dementia. Aging and hypertension are major contributors to CSVD, but the pathophysiological mechanism remains unclear, mainly due to the lack of an ideal animal model. Our previous study revealed that vascular smooth muscle cell (VSMC)-specific myosin phosphatase target subunit 1 (MYPT1) knockout (MYPT1SMKO) leads to constant hypertension, prompting us to explore whether hypertensive MYPT1SMKO mice can be considered a novel CSVD animal model. Here, we found that MYPT1SMKO mice displayed age-dependent CSVD-like neurobehaviors, including decreased motion speed, anxiety, and cognitive decline. MYPT1SMKO mice exhibited remarkable white matter injury compared with control mice, as shown by the more prominent loss of myelin at 12 months of age. Additionally, MYPT1SMKO mice were found to exhibit CSVD-like small vessel impairment, including intravascular hyalinization, perivascular space enlargement, and microbleed and blood-brain barrier (BBB) disruption. Last, our results revealed that the brain of MYPT1SMKO mice was characterized by an exacerbated inflammatory microenvironment, which is similar to patients with CSVD. In light of the above structural and functional phenotypes that closely mimic the conditions of human CSVD, we suggest that MYPT1SMKO mice are a novel age- and hypertension-dependent animal model of CSVD.

6.
iScience ; 25(11): 105446, 2022 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-36388955

RESUMO

Transmembrane protein 16A (TMEM16A) localizes at plasma membrane and controls chloride influx in various type of cells. We here showed an intracellular localization pattern of TMEM16A molecules. In myoblasts, TMEM16A was primarily localized to the cytosolic compartment and partially co-localized with intracellular organelles. The global deletion of TMEM16A led to severe skeletal muscle developmental defect. In vitro observation showed that the proliferation of Tmem16a-/- myoblasts was significantly promoted along with activated ERK1/2 and Cyclin D expression; the myogenic differentiation was impaired accompanied by the enhanced caspase 12/3 activation, implying enhanced endoplasmic reticulum (ER) stress. Interestingly, the bradykinin-induced Ca2+ release from ER calcium store was significantly enhanced after TMEM16A deletion. This suggested a suppressing role of intracellular TMEM16A in ER calcium release whereby regulating the flux of chloride ion across the ER membrane. Our findings reveal a unique location pattern of TMEM16A in undifferentiated myoblasts and its role in myogenesis.

7.
Nat Commun ; 13(1): 5715, 2022 09 29.
Artigo em Inglês | MEDLINE | ID: mdl-36175407

RESUMO

Protein kinase A promotes beige adipogenesis downstream from ß-adrenergic receptor signaling by phosphorylating proteins, including histone H3 lysine 9 (H3K9) demethylase JMJD1A. To ensure homeostasis, this process needs to be reversible however, this step is not well understood. We show that myosin phosphatase target subunit 1- protein phosphatase 1ß (MYPT1-PP1ß) phosphatase activity is inhibited via PKA-dependent phosphorylation, which increases phosphorylated JMJD1A and beige adipogenesis. Mechanistically, MYPT1-PP1ß depletion results in JMJD1A-mediated H3K9 demethylation and activation of the Ucp1 enhancer/promoter regions. Interestingly, MYPT1-PP1ß also dephosphorylates myosin light chain which regulates actomyosin tension-mediated activation of YAP/TAZ which directly stimulates Ucp1 gene expression. Pre-adipocyte specific Mypt1 deficiency increases cold tolerance with higher Ucp1 levels in subcutaneous white adipose tissues compared to control mice, confirming this regulatory mechanism in vivo. Thus, we have uncovered regulatory cross-talk involved in beige adipogenesis that coordinates epigenetic regulation with direct activation of the mechano-sensitive YAP/TAZ transcriptional co-activators.


Assuntos
Adipogenia , Cromatina , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Actomiosina , Adipogenia/genética , Animais , Proteínas Quinases Dependentes de AMP Cíclico , Epigênese Genética , Histonas , Lisina , Camundongos , Cadeias Leves de Miosina , Fosfatase de Miosina-de-Cadeia-Leve/genética , Monoéster Fosfórico Hidrolases
8.
Int J Mol Sci ; 23(15)2022 Jul 24.
Artigo em Inglês | MEDLINE | ID: mdl-35897724

RESUMO

Tetrandrine is well known to act as a calcium channel blocker. It is a potential candidate for a tumor chemotherapy drug without toxicity. Tetrandrine inhibits cancer cell proliferation and induces cell death through apoptosis and autophagy. As cancer patients usually experience complications with sarcopenia or muscle injury, we thus assessed the effects of tetrandrine on skeletal muscle cells. We report in this study that a low dose of tetrandrine (less than 5 µM) does not affect the proliferation of C2C12 myoblasts, but significantly inhibits myogenic differentiation. Consistently, tetrandrine inhibited muscle regeneration after BaCl2-induced injury. Mechanistic experiments showed that tetrandrine decreased the p-mTOR level and increased the levels of LC3 and SQSTM1/p62 during differentiation. Ad-mRFP-GFP-LC3B transfection experiments revealed that the lysosomal quenching of GFP signals was suppressed by tetrandrine. Furthermore, the levels of DNM1L/Drp1, PPARGA1 and cytochrome C (Cyto C), as well as caspase 3 activation and ROS production, were decreased following tetrandrine administration, indicating that the mitochondrial network signaling was inhibited. Our results indicate that tetrandrine has dual effects on autophagic flux in myoblasts during differentiation, activation in the early stage and blockade in the late stage. The ultimate blocking of autophagic flux by tetrandrine led to the disruption of mitochondria remodeling and inhibition of myogenic differentiation. The inhibitory effects of tetrandrine on skeletal muscle differentiation may limit its application in advanced cancer patients. Thus, great attention should be paid to the clinical use of tetrandrine for cancer therapy.


Assuntos
Benzilisoquinolinas , Apoptose , Autofagia , Benzilisoquinolinas/metabolismo , Benzilisoquinolinas/farmacologia , Humanos , Desenvolvimento Muscular , Músculo Esquelético/metabolismo
9.
Commun Biol ; 5(1): 744, 2022 07 25.
Artigo em Inglês | MEDLINE | ID: mdl-35879418

RESUMO

Erectile dysfunction (ED) is closely associated with smooth muscle dysfunction, but its underlying mechanisms remains incompletely understood. We here reported that the reduced expression of myosin phosphatase target subunit 1 (MYPT1), the main regulatory unit of myosin light chain phosphatase, was critical for the development of vasculogenic ED. Male MYPT1 knockout mice had reduced fertility and the penises displayed impaired erections as evidenced by reduced intracavernous pressure (ICP). The penile smooth muscles of the knockout mice displayed enhanced response to G-Protein Couple Receptor agonism and depolarization contractility and resistant relaxation. We further identified a natural compound lotusine that increased the MYPT1 expression by inhibiting SIAH1/2 E3 ligases-mediated protein degradation. This compound sufficiently restored the ICP and improved histological characters of the penile artery of Mypt1 haploinsufficiency mice. In diabetic ED mice (db/db), the decreased expression of MYPT1 was measured, and ICP was improved by lotusine treatment. We conclude that the reduction of MYPT1 is the major pathogenic factor of vasculogenic ED. The restoration of MYPT1 by lotusine improved the function of injured penile smooth muscles, and could be a novel strategy for ED therapy.


Assuntos
Disfunção Erétil , Animais , Disfunção Erétil/tratamento farmacológico , Disfunção Erétil/metabolismo , Masculino , Camundongos , Camundongos Knockout , Músculo Liso/fisiologia , Fosfatase de Miosina-de-Cadeia-Leve/genética , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Fosforilação , Fatores de Virulência/metabolismo
10.
Proc Natl Acad Sci U S A ; 119(26): e2121513119, 2022 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-35737832

RESUMO

Both chronic obstructive pulmonary disease (COPD) and asthma are severe respiratory diseases. Bitter receptor-mediated bronchodilation is a potential therapy for asthma, but the mechanism underlying the agonistic relaxation of airway smooth muscle (ASM) is not well defined. By exploring the ASM relaxation mechanism of bitter substances, we observed that pretreatment with the bitter substances nearly abolished the methacholine (MCh)-induced increase in the ASM cell (ASMC) calcium concentration, thereby suppressing the calcium-induced contraction release. The ASM relaxation was significantly inhibited by simultaneous deletion of three Gαt proteins, suggesting an interaction between Tas2R and AChR signaling cascades in the relaxation process. Biochemically, the Gαt released by Tas2R activation complexes with AChR and blocks the Gαq cycling of AChR signal transduction. More importantly, a bitter substance, kudinoside A, not only attenuates airway constriction but also significantly inhibits pulmonary inflammation and tissue remodeling in COPD rats, indicating its modulation of additional Gαq-associated pathological processes. Thus, our results suggest that Tas2R activation may be an ideal strategy for halting multiple pathological processes of COPD.


Assuntos
Asma , Músculo Liso , Doença Pulmonar Obstrutiva Crônica , Receptores Acoplados a Proteínas G , Ativação Transcricional , Animais , Asma/genética , Asma/metabolismo , Asma/fisiopatologia , Broncodilatadores/farmacologia , Cálcio/metabolismo , Músculo Liso/efeitos dos fármacos , Músculo Liso/metabolismo , Miócitos de Músculo Liso/efeitos dos fármacos , Miócitos de Músculo Liso/metabolismo , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/fisiopatologia , Ratos , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais
11.
J Clin Invest ; 132(14)2022 07 15.
Artigo em Inglês | MEDLINE | ID: mdl-35617029

RESUMO

Intractable functional constipation (IFC) is the most severe form of constipation, but its etiology has long been unknown. We hypothesized that IFC is caused by refractory infection by a pathogenic bacterium. Here, we isolated from patients with IFC a Shigella species - peristaltic contraction-inhibiting bacterium (PIB) - that significantly inhibited peristaltic contraction of the colon by production of docosapentenoic acid (DPA). PIB colonized mice for at least 6 months. Oral administration of PIB was sufficient to induce constipation, which was reversed by PIB-specific phages. A mutated PIB with reduced DPA was incapable of inhibiting colonic function and inducing constipation, suggesting that DPA produced by PIB was the key mediator of the genesis of constipation. PIBs were detected in stools of 56% (38 of 68) of the IFC patients, but not in those of non-IFC or healthy individuals (0 of 180). DPA levels in stools were elevated in 44.12% (30 of 68) of the IFC patients but none of the healthy volunteers (0 of 97). Our results suggest that Shigella sp. PIB may be the critical causative pathogen for IFC, and detection of fecal PIB plus DPA may be a reliable method for IFC diagnosis and classification.


Assuntos
Motilidade Gastrointestinal , Shigella , Animais , Colo , Constipação Intestinal/diagnóstico , Constipação Intestinal/genética , Fezes , Humanos , Camundongos , Shigella/genética
12.
Nat Commun ; 13(1): 894, 2022 02 16.
Artigo em Inglês | MEDLINE | ID: mdl-35173176

RESUMO

Mitochondrial proteolysis is an evolutionarily conserved quality-control mechanism to maintain proper mitochondrial integrity and function. However, the physiological relevance of stress-induced impaired mitochondrial protein quality remains unclear. Here, we demonstrate that LONP1, a major mitochondrial protease resides in the matrix, plays a role in controlling mitochondrial function as well as skeletal muscle mass and strength in response to muscle disuse. In humans and mice, disuse-related muscle loss is associated with decreased mitochondrial LONP1 protein. Skeletal muscle-specific ablation of LONP1 in mice resulted in impaired mitochondrial protein turnover, leading to mitochondrial dysfunction. This caused reduced muscle fiber size and strength. Mechanistically, aberrant accumulation of mitochondrial-retained protein in muscle upon loss of LONP1 induces the activation of autophagy-lysosome degradation program of muscle loss. Overexpressing a mitochondrial-retained mutant ornithine transcarbamylase (ΔOTC), a known protein degraded by LONP1, in skeletal muscle induces mitochondrial dysfunction, autophagy activation, and cause muscle loss and weakness. Thus, these findings reveal a role of LONP1-dependent mitochondrial protein quality-control in safeguarding mitochondrial function and preserving skeletal muscle mass and strength, and unravel a link between mitochondrial protein quality and muscle mass maintenance during muscle disuse.


Assuntos
Proteases Dependentes de ATP/metabolismo , Mitocôndrias/metabolismo , Proteínas Mitocondriais/metabolismo , Músculo Esquelético/patologia , Atrofia Muscular/patologia , Proteases Dependentes de ATP/genética , Animais , Autofagia/fisiologia , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Proteínas Mitocondriais/genética , Força Muscular/fisiologia , Ornitina Carbamoiltransferase/metabolismo , Proteólise , Proteostase/fisiologia
13.
J Biol Chem ; 298(1): 101516, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34942145

RESUMO

The thymus is the central immune organ, but it is known to progressively degenerate with age. As thymus degeneration is paralleled by the wasting of aging skeletal muscle, we speculated that the thymus may play a role in muscle wasting. Here, using thymectomized mice, we show that the thymus is necessary for skeletal muscle regeneration, a process tightly associated with muscle aging. Compared to control mice, the thymectomized mice displayed comparable growth of muscle mass, but decreased muscle regeneration in response to injury, as evidenced by small and sparse regenerative myofibers along with inhibited expression of regeneration-associated genes myh3, myod, and myogenin. Using paired box 7 (Pax7)-immunofluorescence staining and 5-Bromo-2'-deoxyuridine-incorporation assay, we determined that the decreased regeneration capacity was caused by a limited satellite cell pool. Interestingly, the conditioned culture medium of isolated thymocytes had a potent capacity to directly stimulate satellite cell expansion in vitro. These expanded cells were enriched in subpopulations of quiescent satellite cells (Pax7highMyoDlowEdUpos) and activated satellite cells (Pax7highMyoDhighEdUpos), which were efficiently incorporated into the regenerative myofibers. We thus propose that the thymus plays an essential role in muscle regeneration by directly promoting satellite cell expansion and may function profoundly in the muscle aging process.


Assuntos
Músculo Esquelético , Regeneração , Células Satélites de Músculo Esquelético , Timo , Animais , Diferenciação Celular , Proliferação de Células , Camundongos , Desenvolvimento Muscular/fisiologia , Músculo Esquelético/crescimento & desenvolvimento , Músculo Esquelético/metabolismo , Proteína MyoD/genética , Proteína MyoD/metabolismo , Fator de Transcrição PAX7/genética , Fator de Transcrição PAX7/metabolismo , Regeneração/fisiologia , Células Satélites de Músculo Esquelético/citologia , Células Satélites de Músculo Esquelético/metabolismo , Timo/metabolismo , Cicatrização
14.
Stem Cell Reports ; 16(9): 2257-2273, 2021 09 14.
Artigo em Inglês | MEDLINE | ID: mdl-34525385

RESUMO

Hair cell degeneration is a major cause of sensorineural hearing loss. Hair cells in mammalian cochlea do not spontaneously regenerate, posing a great challenge for restoration of hearing. Here, we establish a robust, high-throughput cochlear organoid platform that facilitates 3D expansion of cochlear progenitor cells and differentiation of hair cells in a temporally regulated manner. High-throughput screening of the FDA-approved drug library identified regorafenib, a VEGFR inhibitor, as a potent small molecule for hair cell differentiation. Regorafenib also promotes reprogramming and maturation of hair cells in both normal and neomycin-damaged cochlear explants. Mechanistically, inhibition of VEGFR suppresses TGFB1 expression via the MEK pathway and TGFB1 downregulation directly mediates the effect of regorafenib on hair cell reprogramming. Our study not only demonstrates the power of a cochlear organoid platform in high-throughput analyses of hair cell physiology but also highlights VEGFR-MEK-TGFB1 signaling crosstalk as a potential target for hair cell regeneration and hearing restoration.


Assuntos
Reprogramação Celular , Cóclea/metabolismo , Ensaios de Triagem em Larga Escala , Quinases de Proteína Quinase Ativadas por Mitógeno/metabolismo , Organoides/metabolismo , Receptores de Fatores de Crescimento do Endotélio Vascular/metabolismo , Fator de Crescimento Transformador beta1/metabolismo , Animais , Técnicas de Cultura de Células em Três Dimensões/métodos , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/genética , Células Cultivadas , Reprogramação Celular/genética , Cóclea/citologia , Descoberta de Drogas/métodos , Avaliação Pré-Clínica de Medicamentos , Regulação da Expressão Gênica/efeitos dos fármacos , Células Ciliadas Auditivas/citologia , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/metabolismo , Camundongos , Camundongos Transgênicos , Organoides/citologia , Compostos de Fenilureia/farmacologia , Piridinas/farmacologia , Receptores Acoplados a Proteínas G/genética , Receptores Acoplados a Proteínas G/metabolismo , Transdução de Sinais/efeitos dos fármacos
15.
iScience ; 24(9): 103047, 2021 Sep 24.
Artigo em Inglês | MEDLINE | ID: mdl-34553133

RESUMO

Vascular smooth muscle cells (VSMCs) have been widely recognized as key players in regulating blood-brain barrier (BBB) function, and their roles are unclear in ischemic stroke. Myosin phosphatase target subunit 1 (MYPT1) is essential for VSMC contraction and maintaining healthy vasculature. We generated VSMC-specific MYPT1 knockout (MYPT1SMKO) mice and cultured VSMCs infected with Lv-shMYPT1 to explore phenotypic switching of VSMCs and the accompanied impacts on BBB integrity. We found that MYPT1 deficiency induced phenotypic switching of synthetic VSMCs, which aggravated BBB disruption. Proteomic analysis identified evolutionarily conserved signaling intermediates in Toll pathways (ECSIT) as a downstream molecule that promotes activation of synthetic VSMCs and contributed to IL-6 expression. Knocking down ECSIT rescued phenotypic switching of VSMCs and BBB disruption. Additionally, inhibition of IL-6 decreased BBB permeability. These findings reveal that MYPT1 deficiency activated phenotypic switching of synthetic VSMCs and induced BBB disruption through ECSIT-IL-6 signaling after ischemic stroke.

16.
J Genet Genomics ; 48(6): 452-462, 2021 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-34353741

RESUMO

Airway smooth muscle (ASM) has developed a mechanical adaption mechanism by which it transduces force and responds to environmental forces, which is essential for periodic breathing. Cytoskeletal reorganization has been implicated in this process, but the regulatory mechanism remains to be determined. We here observe that ASM abundantly expresses cytoskeleton regulators Limk1 and Limk2, and their expression levels are further upregulated in chronic obstructive pulmonary disease (COPD) animals. By establishing mouse lines with deletions of Limk1 or Limk2, we analyse the length-sensitive contraction, F/G-actin dynamics, and F-actin pool of mutant ASM cells. As LIMK1 phosphorylation does not respond to the contractile stimulation, LIMK1-deficient ASM develops normal maximal force, while LIMK2 or LIMK1/LIMK2 deficient ASMs show approximately 30% inhibition. LIMK2 deletion causes a significant decrease in cofilin phosphorylation along with a reduced F/G-actin ratio. As LIMK2 functions independently of cross-bridge movement, this observation indicates that LIMK2 is necessary for F-actin dynamics and hence force transduction. Moreover, LIMK2-deficient ASMs display abolishes stretching-induced suppression of 5-hydroxytryptamine (5-HT) but not acetylcholine-evoks force, which is due to the differential contraction mechanisms adopted by the agonists. We propose that LIMK2-mediated cofilin phosphorylation is required for membrane cytoskeleton reorganization that is necessary for ASM mechanical adaption including the 5-HT-evoked length-sensitive effect.


Assuntos
Membrana Celular/metabolismo , Citoesqueleto/metabolismo , Quinases Lim/metabolismo , Músculo Liso/fisiologia , Fatores de Despolimerização de Actina/metabolismo , Actinas/metabolismo , Animais , Modelos Animais de Doenças , Quinases Lim/genética , Camundongos , Contração Muscular , Músculo Liso/metabolismo , Fosforilação , Doença Pulmonar Obstrutiva Crônica/genética , Doença Pulmonar Obstrutiva Crônica/metabolismo , Ratos , Serotonina/metabolismo
17.
Acta Biochim Biophys Sin (Shanghai) ; 53(5): 567-574, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33710297

RESUMO

Leucocyte adhesion to the vascular endothelium is a critical event in the early inflammatory response to infection and injury. This process is primarily regulated by the expression of cell adhesion molecules (CAMs) in endothelial cells. It has been well documented that tumor necrosis factor alpha (TNF-α) is a key regulator of CAM expression within this process, but its regulatory mechanism remains controversial. To investigate the scenario within this process, we assessed the role of zipper-interacting protein kinase (ZIPK), a serine/threonine kinase with multiple substrates, in CAM expression. We used TNF-α as inflammatory stimulator and found that ZIPK was integrated into the signaling regulation of TNF-α-mediated CAM expression. In human umbilical vein endothelial cells (HUVECs), TNF-α exposure led to significantly increased expression of both intercellular CAM-1 (ICAM-1) and vascular CAM-1 (VCAM-1), along with an increase in the adhesion of THP-1 monocytes to HUVECs. Simultaneously, ZIPK gene was also up-regulated at the transcription level. These effects were clearly inhibited by the ZIPK-specific inhibitor Tc-DAPK6 or small interfering RNA (siRNA) capable of specifically inhibiting ZIPK expression. We thus suggest that both ZIPK activation and ZIPK gene expression are necessary for TNF-α-mediated CAM expression and leucocyte adhesion. Interestingly, ZIPK inhibition also significantly suppressed TNF-α-induced nuclear factor kappa B (NF-κB) activation, indicating that TNF-α-mediated ZIPK expression functions upstream of NF-κB and CAM expression. We thus propose a TNF-α/ZIPK/NF-κB signaling axis for CAM expression that is necessary for leucocyte adhesion to endothelial cells. Our data in this study revealed a potential molecular target for exploring anti-inflammation drugs.


Assuntos
Proteínas Quinases Associadas com Morte Celular/biossíntese , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos/metabolismo , Transdução de Sinais/efeitos dos fármacos , Fator de Necrose Tumoral alfa/farmacologia , Molécula 1 de Adesão de Célula Vascular/metabolismo , Adesão Celular/efeitos dos fármacos , Proteínas Quinases Associadas com Morte Celular/genética , Células Endoteliais da Veia Umbilical Humana , Humanos , Molécula 1 de Adesão Intercelular/genética , Transdução de Sinais/genética , Células THP-1 , Molécula 1 de Adesão de Célula Vascular/genética
18.
Cell Death Dis ; 12(2): 176, 2021 02 12.
Artigo em Inglês | MEDLINE | ID: mdl-33579894

RESUMO

It is well-established that long-term exposure of the vasculature to metabolic disturbances leads to abnormal vascular tone, while the physiological regulation of vascular tone upon acute metabolic challenge remains unknown. Here, we found that acute glucose challenge induced transient increases in blood pressure and vascular constriction in humans and mice. Ex vivo study in isolated thoracic aortas from mice showed that glucose-induced vascular constriction is dependent on glucose oxidation in vascular smooth muscle cells. Specifically, mitochondrial membrane potential (ΔΨm), an essential component in glucose oxidation, was increased along with glucose influx and positively regulated vascular smooth muscle tone. Mechanistically, mitochondrial hyperpolarization inhibited the activity of myosin light chain phosphatase (MLCP) in a Ca2+-independent manner through activation of Rho-associated kinase, leading to cell contraction. However, ΔΨm regulated smooth muscle tone independently of the small G protein RhoA, a major regulator of Rho-associated kinase signaling. Furthermore, myosin phosphatase target subunit 1 (MYPT1) was found to be a key molecule in mediating MLCP activity regulated by ΔΨm. ΔΨm positively phosphorylated MYPT1, and either knockdown or knockout of MYPT1 abolished the effects of glucose in stimulating smooth muscle contraction. In addition, smooth muscle-specific Mypt1 knockout mice displayed blunted response to glucose challenge in blood pressure and vascular constriction and impaired clearance rate of circulating metabolites. These results suggested that glucose influx stimulates vascular smooth muscle contraction via mitochondrial hyperpolarization-inactivated myosin phosphatase, which represents a novel mechanism underlying vascular constriction and circulating metabolite clearance.


Assuntos
Glucose/administração & dosagem , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Mitocôndrias Musculares/efeitos dos fármacos , Músculo Liso Vascular/efeitos dos fármacos , Miócitos de Músculo Liso/efeitos dos fármacos , Fosfatase de Miosina-de-Cadeia-Leve/metabolismo , Vasoconstrição/efeitos dos fármacos , Adulto , Animais , Aorta Torácica/efeitos dos fármacos , Aorta Torácica/enzimologia , Glicemia/metabolismo , Pressão Sanguínea/efeitos dos fármacos , Células Cultivadas , Glucose/metabolismo , Humanos , Masculino , Manitol/administração & dosagem , Manitol/sangue , Camundongos Endogâmicos C57BL , Camundongos Knockout , Mitocôndrias Musculares/metabolismo , Músculo Liso Vascular/enzimologia , Miócitos de Músculo Liso/enzimologia , Fosfatase de Miosina-de-Cadeia-Leve/genética , Oxirredução , Distribuição Aleatória , Transdução de Sinais , Proteína rhoA de Ligação ao GTP/genética , Proteína rhoA de Ligação ao GTP/metabolismo
19.
Oncol Rep ; 45(2): 764-775, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-33416178

RESUMO

Diffuse large B­cell lymphoma (DLBCL) is the most prevalent type of non­Hodgkin's lymphoma with a heterogeneous molecular pathogenesis and aggressive clinical manifestations. The aim of the present study was to investigate the role of miR­196a­3p and its target gene in the development and progression of DLBCL. RT­qPCR was used to detect the miR­196a­3p expression level in human DLBCL cell lines and DLBCL pathological tissues and compare them with the normal control. The clinical significance of the miR­196a­3p expression was also analyzed in DLBCL patients. Next, the effect of miR­196a­3p overexpression on the cell cycle, apoptosis, and proliferation of DLBCL cells was evaluated. To explore its underlying mechanism, the target gene of miR­196a­3p was predicted and validated using bioinformatics and molecular biological approaches. Finally, the expression of this target gene in clinical specimens and its correlation with clinicopathological characteristics were determined. The decreased expression of miR­196a­3p was validated in DLBCL, with further analysis proving that it was correlated with poor prognosis. It was shown that the overexpression of miR­196a­3p was associated with cell cycle arrest, enhanced apoptosis, and inhibited proliferation in DLBCL cells. Furthermore, ADP ribosylation factor 4 (ARF4) was verified as the downstream target gene of miR­196a­3p. Similar to miR­196a­3p restoration in vitro, endogenous ARF4­knockdown was proven to inhibit cell proliferation through cell cycle arrest and elevate apoptosis in DLBCL. The present results indicated that miR­196a­3p downregulation contributed to the tumorigenesis of DLBCL by targeting ARF4 expression, which may be used as a novel prognostic marker or potential molecular therapeutic target for DLBCL management in the future.


Assuntos
Fatores de Ribosilação do ADP/genética , Regulação Neoplásica da Expressão Gênica , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/metabolismo , Apoptose/genética , Biópsia , Medula Óssea/patologia , Carcinogênese/genética , Pontos de Checagem do Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/genética , Feminino , Técnicas de Silenciamento de Genes , Humanos , Linfoma Difuso de Grandes Células B/patologia , Masculino , Pessoa de Meia-Idade
20.
J Mol Cell Biol ; 13(2): 116-127, 2021 05 07.
Artigo em Inglês | MEDLINE | ID: mdl-33340314

RESUMO

Dystocia is a serious problem for pregnant women, and it increases the cesarean section rate. Although uterine dysfunction has an unknown etiology, it is responsible for cesarean delivery and clinical dystocia, resulting in neonatal morbidity and mortality; thus, there is an urgent need for novel therapeutic agents. Previous studies indicated that statins, which inhibit the mevalonate (MVA) pathway of cholesterol synthesis, can reduce the incidence of preterm birth, but the safety of statins for pregnant women has not been thoroughly evaluated. Therefore, to unambiguously examine the function of the MVA pathway in pregnancy and delivery, we employed a genetic approach by using myometrial cell-specific deletion of geranylgeranyl pyrophosphate synthase (Ggps1) mice. We found that Ggps1 deficiency in myometrial cells caused impaired uterine contractions, resulting in disrupted embryonic placing and dystocia. Studies of the underlying mechanism suggested that Ggps1 is required for uterine contractions to ensure successful parturition by regulating RhoA prenylation to activate the RhoA/Rock2/p-MLC pathway. Our work indicates that perturbing the MVA pathway might result in problems during delivery for pregnant females, but modifying protein prenylation with supplementary farnesyl pyrophosphate or geranylgeranyl pyrophosphate might be a strategy to avoid side effects.


Assuntos
Distocia/etiologia , Distocia/fisiopatologia , Farnesiltranstransferase/deficiência , Predisposição Genética para Doença , Complexos Multienzimáticos/deficiência , Contração Uterina/genética , Animais , Biomarcadores , Modelos Animais de Doenças , Distocia/metabolismo , Farnesiltranstransferase/metabolismo , Feminino , Estudos de Associação Genética , Células da Granulosa/citologia , Células da Granulosa/metabolismo , Infertilidade/genética , Camundongos , Camundongos Knockout , Complexos Multienzimáticos/metabolismo , Organogênese/genética , Folículo Ovariano/crescimento & desenvolvimento , Folículo Ovariano/metabolismo , Fenótipo , Gravidez , Ligação Proteica , Transdução de Sinais , Útero/embriologia , Útero/metabolismo , Útero/fisiopatologia , Quinases Associadas a rho/metabolismo , Proteína rhoA de Ligação ao GTP/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA