Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Foods ; 11(1)2021 Dec 29.
Artigo em Inglês | MEDLINE | ID: mdl-35010203

RESUMO

Recently, concerns about heavy metal cadmium ion (Cd2+) residue in asparagus have been frequently reported, and there is an urgent need to develop an effective, sensitive, and rapid detection method for Cd2+. In this study, we innovatively combined molecular microbiology to carry out the comparative screening of Cd2+ chelators in a green, efficient, and specific way. The knock-out putative copper-transporter gene (pca1Δ) yeast strain with high sensitivity to Cd2+ was first used to screen the Cd2+ chelator, and the optimum chelator 1-(4-Isothiocyanatobenzyl)ethylenediamine-N,N,N,N'-tetraacetic acid (ITCBE) was obtained. Additionally, a rapid latex microsphere immunochromatographic assay (LMIA) was developed, based on the obtained monoclonal antibody (mAb) with high specificity and high affinity (affinity constant Ka = 1.83 × 1010 L/mol), to detect Cd2+ in asparagus. The 50% inhibitive concentration (IC50) of test strip was measured to be 0.2 ng/mL, and the limit of detection (IC10) for qualitative (LOD, for visual observation) and quantitative detection (LOQ, for data simulation) of the test strip was 2 ng/mL and 0.054 ng/mL, respectively. In all, the developed mAb-based LMIA shows a great potential for monitoring Cd2+ in asparagus, even in vegetable samples.

3.
J Cell Mol Med ; 24(13): 7151-7162, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32530106

RESUMO

TGFß2 is an essential regulator of immune cell functionality, but the mechanisms whereby it drives immune infiltration in gastric cancer remain uncertain. The Oncomine and Tumor Immunoassay Resource (TIMER) databases were used for assessing the expression of TGFß2, after which TIMER was used to explore the relationship between TGFß2 and tumour immune infiltration. Finally, we assessed how TGFß2 expression correlated with the expression of a set of marker genes associated with immune infiltration using TIMER and GEPIA. We determined TGFß2 expression to be significantly correlated with outcome in multiple types of cancer in the Cancer Genome Atlas (TCGA), with the effect being particularly pronounced in gastric cancer. Furthermore, elevated TGFß2 expression was found to be significantly correlated with gastric cancer N staging, and with the expression of a variety of immune markers associated with particular immune cell subsets. These results indicate that TGFΒ2 is associated with patient outcome and tumour immune cell infiltration in multiple cancer types. This suggests that TGFß2 is a key factor which governs immune cell recruitment to gastric cancer tumours, potentially playing a vital role in governing immune cell infiltration and thus representing a valuable prognostic biomarker in gastric cancer patients.


Assuntos
Biomarcadores Tumorais/metabolismo , Neoplasias Gástricas/imunologia , Fator de Crescimento Transformador beta2/metabolismo , Feminino , Humanos , Estimativa de Kaplan-Meier , Metástase Linfática , Masculino , Prognóstico , Macrófagos Associados a Tumor/metabolismo , Macrófagos Associados a Tumor/patologia
4.
Oncol Lett ; 19(3): 1657-1664, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-32194657

RESUMO

F-box and WD repeat domain-containing protein 7 (FBW7), also known as FBXW7, AGO or hCDC4, is an F-box protein with seven tandem WD40 repeats. FBW7 is a key substrate recognition subunit of the Skp1-Cul1-F-box-protein E3 ubiquitin ligase. FBW7 targets for ubiquitination and destruction of numerous crucial transcription factors and protooncogenes, including cyclin E, c-Myc, c-Jun, Notch and MCL-1. FBW7 is a well-characterized tumor suppressor, and its gene is frequently mutated or deleted in various types of human cancer, including colorectal cancer, gastric cancer, ovarian cancer and different types of leukemia. Accumulating evidence indicates that the aberrant expression of FBW7 is involved in the development of hematological tumors, including T cell acute lymphoblastic leukemia, adult T cell leukemia/lymphoma, chronic lymphocytic leukemia and multiple myeloma. The present review will describe the latest findings on the role of FBW7 in hematological tumors, in order to identify a novel target for future therapies.

5.
Oncol Rep ; 43(1): 3-15, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31746396

RESUMO

Maintenance of an appropriate oxygen concentration is essential for the function of the liver. However, in many pathological conditions, and particularly in the tumor microenvironment, cells and tissues are frequently in a hypoxic state. In the presence of hypoxia, the cells adapt to the low oxygen levels through the hypoxia­inducible factor (HIF) pathway. Overgrowth of tumor cells restricts the diffusion of oxygen in tumors, leading to insufficient blood supply and the creation of a hypoxic microenvironment, and, as a consequence, activation of the expression of HIFs. HIFs possess a wide range of target genes, which function to control a variety of signaling pathways; thus, HIFs modulate cellular metabolism, immune escape, angiogenesis, metastasis, extracellular matrix remodeling, cancer stem cells and other properties of the tumor. Given their crucial role in the occurrence and development of tumors, HIFs are expected to become new targets of precise treatment of hepatocellular carcinoma.


Assuntos
Carcinoma Hepatocelular/metabolismo , Fator 1 Induzível por Hipóxia/metabolismo , Neoplasias Hepáticas/metabolismo , Hipóxia Celular , Humanos , Células-Tronco Neoplásicas/metabolismo , Transdução de Sinais , Evasão Tumoral , Microambiente Tumoral
6.
J Cell Mol Med ; 23(11): 7395-7405, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31483572

RESUMO

The aberrant expression and dysfunction of long non-coding RNAs (lncRNAs) have been identified as critical factors governing the initiation and progression of different human cancers, including diffuse large B-cell lymphoma (DLBCL). LncRNA small nucleolar RNA host gene 16 (SNHG16) has been recognized as a tumour-promoting factor in various types of cancer. However, the biological role of SNHG16 and its underlying mechanism are still unknown in DLBCL. Here we disclosed that SNHG16 was overexpressed in DLBCL tissues and the derived cell lines. SNHG16 knockdown significantly suppressed cell proliferation and cell cycle progression, and it induced apoptosis of DLBCL cells in vitro. Furthermore, silencing of SNHG16 markedly repressed in vivo growth of OCI-LY7 cells. Mechanistically, SNHG16 directly interacted with miR-497-5p by acting as a competing endogenous RNA (ceRNA) and inversely regulated the abundance of miR-497-5p in DLBCL cells. Moreover, the proto-oncogene proviral integration site for Moloney murine leukaemia virus 1 (PIM1) was identified as a novel direct target of miR-497-5p. SNHG16 overexpression rescued miR-497-5p-induced down-regulation of PIM1 in DLBCL cells. Importantly, restoration of PIM1 expression reversed SNHG16 knockdown-induced inhibition of proliferation, G0/G1 phase arrest and apoptosis of OCI-LY7 cells. Our study suggests that the SNHG16/miR-497-5p/PIM1 axis may provide promising therapeutic targets for DLBCL progression.


Assuntos
Apoptose/genética , Proliferação de Células/genética , Linfoma Difuso de Grandes Células B/genética , MicroRNAs/genética , Proteínas Proto-Oncogênicas c-pim-1/genética , RNA Longo não Codificante/genética , Adulto , Idoso , Ciclo Celular/genética , Linhagem Celular , Linhagem Celular Tumoral , Movimento Celular/genética , Progressão da Doença , Regulação para Baixo/genética , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Células HEK293 , Humanos , Masculino , Pessoa de Meia-Idade , Proto-Oncogene Mas , Adulto Jovem
7.
J Cell Mol Med ; 23(8): 5037-5047, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31207037

RESUMO

MicroRNAs (miRNAs) are key regulators in the tumour growth and metastasis of human hepatocellular carcinoma (HCC). Increasing evidence suggests that miR-301b-3p functions as a driver in various types of human cancer. However, the expression pattern of miR-301b-3p and its functional role as well as underlying molecular mechanism in HCC remain poorly known. Our study found that miR-301b-3p expression was significantly up-regulated in HCC tissues compared to adjacent non-tumour tissues. Clinical association analysis revealed that the high level of miR-301b-3p closely correlated with large tumour size and advanced tumour-node-metastasis stages. Importantly, the high miR-301b-3p level predicted a prominent poorer overall survival of HCC patients. Knockdown of miR-301b-3p suppressed cell proliferation, led to cell cycle arrest at G2/M phase and induced apoptosis of Huh7 and Hep3B cells. Furthermore, miR-301b-3p knockdown suppressed tumour growth of HCC in mice. Mechanistically, miR-301b-3p directly bond to 3'UTR of vestigial like family member 4 (VGLL4) and negatively regulated its expression. The expression of VGLL4 mRNA was down-regulated and inversely correlated with miR-301b-3p level in HCC tissues. Notably, VGLL4 knockdown markedly repressed cell proliferation, resulted in G2/M phase arrest and promoted apoptosis of HCC cells. Accordingly, VGLL4 silencing rescued miR-301b-3p knockdown attenuated HCC cell proliferation, cell cycle progression and apoptosis resistance. Collectively, our results suggest that miR-301b-3p is highly expressed in HCC. miR-301b-3p facilitates cell proliferation, promotes cell cycle progression and inhibits apoptosis of HCC cells by repressing VGLL4.


Assuntos
Carcinoma Hepatocelular/genética , Proliferação de Células/genética , Pontos de Checagem da Fase G2 do Ciclo Celular/genética , Neoplasias Hepáticas/genética , Metástase Linfática/genética , MicroRNAs/metabolismo , Fatores de Transcrição/metabolismo , Regiões 3' não Traduzidas , Animais , Apoptose/genética , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Carcinoma Hepatocelular/secundário , Linhagem Celular Tumoral , Feminino , Regulação Neoplásica da Expressão Gênica/genética , Técnicas de Silenciamento de Genes , Inativação Gênica , Humanos , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , MicroRNAs/genética , Pessoa de Meia-Idade , Prognóstico , Fatores de Transcrição/genética , Transplante Heterólogo
8.
Biomed Pharmacother ; 117: 109069, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31181442

RESUMO

Accumulating evidence supports that long non-coding RNAs (lncRNAs) are implicated in the tumorigenesis and progression of glioma. Recent studies find that lncRNA long intergenic non-protein coding RNA 689 (LINC00689) is associated with obesity and participates in eukaryotic gene expression. However, whether LINC00689 plays a critical role in glioma progression remains unknown. Here, we identified a highly expressed lncRNA LINC00689 in gliomas compared to normal brain tissues based on the GSE dataset (GSE4290). The analysis of our data indicated that the expression of LINC00689 was up-regulated in glioma tissues and cell lines. Moreover, the high expression of LINC00689 was closely correlated with tumor size ≥3 cm, high tumor grade, low KPS scores and poor prognosis of glioma patients. Further investigation demonstrated that LINC00689 knockdown markedly repressed the proliferation, migration, invasion and glycolysis of glioma cells. Additionally, silencing of LINC00689 significantly suppressed the growth of glioma cells in vivo. Mechanistically, LINC00689 functioned as a competing endogenous RNA (ceRNA) by directly interacting with miR-338-3p to promote pyruvate kinase M2 (PKM2) expression. Notably, we also revealed that restoration of PKM2 abolished the effects of LINC00689 silencing on glioma cell proliferation, migration, invasion and glycolysis. In summary, our results suggested that LINC00689/miR-338-3p/PKM2 axis might play an essential role in glioma progression.


Assuntos
Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia , Proteínas de Transporte/metabolismo , Glioma/genética , Glioma/patologia , Glicólise , Proteínas de Membrana/metabolismo , MicroRNAs/metabolismo , RNA Longo não Codificante/metabolismo , Hormônios Tireóideos/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Feminino , Regulação Neoplásica da Expressão Gênica , Células HEK293 , Humanos , Masculino , Camundongos , MicroRNAs/genética , Pessoa de Meia-Idade , Invasividade Neoplásica , Metástase Neoplásica , RNA Longo não Codificante/genética , Regulação para Cima/genética , Proteínas de Ligação a Hormônio da Tireoide
9.
Mol Cancer ; 18(1): 28, 2019 02 19.
Artigo em Inglês | MEDLINE | ID: mdl-30782188

RESUMO

BACKGROUND: Hepatocellular carcinoma (HCC) is the most common malignant liver tumor with poor clinical outcomes. Increasing amount of long non-coding RNAs (lncRNAs) have been revealed to be implicated in the carcinogenesis and progression of HCC. However, the expressions, clinical significances, and roles of most lncRNAs in HCC are still unknown. METHODS: The expression of lncRNA MCM3AP antisense RNA 1 (MCM3AP-AS1) in HCC tissues and cell lines was detected by qRT-PCR and fluorescence in situ hybridization. Immunoblotting, CCK-8, EdU, colony formation and flow cytometry were performed to investigate the role of MCM3AP-AS1 in HCC cell proliferation, cell cycle and apoptosis in vitro. A subcutaneous tumor mouse model was constructed to analyze in vivo growth of HCC cells after MCM3AP-AS1 knockdown. The interactions among MCM3AP-AS1, miR-194-5p and FOXA1 were measured by RNA pull-down, RNA immunoprecipitation and luciferase reporter assay. RESULTS: We revealed a novel oncogenic lncRNA MCM3AP-AS1, which is overexpressed in HCC and positively correlated with large tumor size, high tumor grade, advanced tumor stage and poor prognosis of HCC patients. MCM3AP-AS1 knockdown suppressed HCC cell proliferation, colony formation and cell cycle progression, and induced apoptosis in vitro, and depletion of MCM3AP-AS1 inhibited tumor growth of HCC in vivo. Mechanistically, MCM3AP-AS1 directly bound to miR-194-5p and acted as competing endogenous RNA (ceRNA), and subsequently facilitated miR-194-5p's target gene forkhead box A1 (FOXA1) expression in HCC cells. Interestingly, FOXA1 restoration rescued MCM3AP-AS1 knockdown induced proliferation inhibition, G1 arrest and apoptosis of HCC cells. CONCLUSIONS: Our results recognized MCM3AP-AS1 as a novel oncogenic lncRNA, which indicated poor clinical outcomes in patients with HCC. MCM3AP-AS1 exerted an oncogenic role in HCC via targeting miR-194-5p and subsequently promoted FOXA1 expression. Our findings suggested that MCM3AP-AS1 could be a potential prognostic biomarker and therapeutic target for HCC.


Assuntos
Acetiltransferases/genética , Carcinoma Hepatocelular/genética , Regulação Neoplásica da Expressão Gênica , Fator 3-alfa Nuclear de Hepatócito/genética , Peptídeos e Proteínas de Sinalização Intracelular/genética , Neoplasias Hepáticas/genética , MicroRNAs/genética , RNA Longo não Codificante/genética , Acetiltransferases/metabolismo , Adulto , Idoso , Animais , Apoptose/genética , Proteínas Argonautas/genética , Proteínas Argonautas/metabolismo , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/mortalidade , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células , Progressão da Doença , Feminino , Fator 3-alfa Nuclear de Hepatócito/metabolismo , Humanos , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/mortalidade , Neoplasias Hepáticas/patologia , Metástase Linfática , Masculino , Camundongos , MicroRNAs/metabolismo , Pessoa de Meia-Idade , Estadiamento de Neoplasias , RNA Longo não Codificante/antagonistas & inibidores , RNA Longo não Codificante/metabolismo , RNA Interferente Pequeno/genética , RNA Interferente Pequeno/metabolismo , Transdução de Sinais , Análise de Sobrevida
10.
Free Radic Biol Med ; 131: 356-369, 2019 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-30557609

RESUMO

Dihydroartemisinin (DHA) has been shown to be capable of inhibiting cancer growth, whereas it remains largely elusive that the underlying molecular mechanism of DHA induced acute myeloid leukemia (AML) cell death. In the present study, we examined the effects of DHA on the proliferation and ferroptosis of AML cells as well as to elucidate the underlying molecular mechanisms. We found that DHA strongly inhibited the viability of AML cell lines and arrest cell cycle at G0/G1 phase. Further studies found that DHA effectively induced AML cells ferroptosis, which was iron-dependent and accompanied by mitochondrial dysfunction. Mechanistically, DHA induced autophagy by regulating the activity of AMPK/mTOR/p70S6k signaling pathway, which accelerated the degradation of ferritin, increased the labile iron pool, promoted the accumulation of cellular ROS and eventually led to ferroptotic cell death. Over expression of ISCU (Iron-sulfur cluster assembly enzyme, a mitochondrial protein) significantly attenuated DHA induced ferroptosis by regulating iron metabolism, rescuing the mitochondrial function and increasing the level of GSH. Meanwhile, FTH reconstituted AML cells also exhibited the reduced lipid peroxides content and restored the DHA-induced ferroptosis. In summary, these results provide experimental evidences on the detailed mechanism of DHA-induced ferroptosis and reveal that DHA might represent a promising therapeutic agent to preferentially target AML cells.


Assuntos
Antineoplásicos/farmacologia , Apoferritinas/genética , Artemisininas/farmacologia , Ferroptose/efeitos dos fármacos , Regulação Leucêmica da Expressão Gênica , Leucemia Mieloide Aguda/tratamento farmacológico , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Animais , Antimaláricos/farmacologia , Apoferritinas/metabolismo , Autofagia/efeitos dos fármacos , Autofagia/genética , Ciclo Celular/efeitos dos fármacos , Ciclo Celular/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Ferroptose/genética , Células HL-60 , Humanos , Proteínas Ferro-Enxofre/genética , Proteínas Ferro-Enxofre/metabolismo , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/patologia , Potencial da Membrana Mitocondrial/efeitos dos fármacos , Camundongos , Camundongos Nus , Mitocôndrias/efeitos dos fármacos , Mitocôndrias/metabolismo , Mitocôndrias/patologia , Proteólise , Espécies Reativas de Oxigênio/agonistas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Quinases S6 Ribossômicas 70-kDa/genética , Proteínas Quinases S6 Ribossômicas 70-kDa/metabolismo , Transdução de Sinais , Células THP-1 , Serina-Treonina Quinases TOR/genética , Serina-Treonina Quinases TOR/metabolismo , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
11.
Exp Cell Res ; 371(2): 389-398, 2018 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-30176218

RESUMO

Neurons are highly polarized cells with an axon and dendritic arbors. It is still not well studied that how formation and elaboration of axon and dendrites is controlled by diffusible signaling factors such as glutamate via specific receptors. We found that N-methyl-D-aspartate (NMDA) receptors were enriched (stage 2-3) but decreased expression (stage 4-5) at tip of axon of cultured hippocampal neurons during distinct development stages. Inhibition of NMDA receptor activity by competitive antagonist DL-2-amino-5-phosphonovalerate (APV) or channel blocker MK801 promoted axonal outgrowth at the early stages, whereas inhibited dendritic development in later stages. Meanwhile, knockdown of NMDA receptors also promoted axonal outgrowth and branch in immature neurons. Furthermore, GluN2B but not GluN2A subunit inhibited axonal outgrowth in immature hippocampal neurons. Finally, we found that NMDA receptors inhibited axonal outgrowth by inactivating Akt and activating GSK-3ß signaling in a calcineurin-dependent manner. Taken together, our results demonstrate that stabilization GSK-3ß activation in the axon growth cone by Ca2+ influx through NMDA receptors may be involved in regulation of axon formation in immature neurons at early stages.


Assuntos
Calcineurina/genética , Glicogênio Sintase Quinase 3 beta/genética , Plasticidade Neuronal/genética , Neurônios/metabolismo , Proteínas Proto-Oncogênicas c-akt/genética , Receptores de N-Metil-D-Aspartato/genética , 2-Amino-5-fosfonovalerato/farmacologia , Animais , Calcineurina/metabolismo , Cálcio/metabolismo , Cátions Bivalentes , Maleato de Dizocilpina/farmacologia , Embrião de Mamíferos , Regulação da Expressão Gênica no Desenvolvimento , Glicogênio Sintase Quinase 3 beta/metabolismo , Hipocampo/efeitos dos fármacos , Hipocampo/embriologia , Hipocampo/metabolismo , Transporte de Íons , Glicoproteínas de Membrana/genética , Glicoproteínas de Membrana/metabolismo , Plasticidade Neuronal/efeitos dos fármacos , Neurônios/citologia , Neurônios/efeitos dos fármacos , Cultura Primária de Células , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Ratos Sprague-Dawley , Receptores de N-Metil-D-Aspartato/metabolismo , Transdução de Sinais
12.
Cell Physiol Biochem ; 47(3): 981-993, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29843123

RESUMO

BACKGROUND/AIMS: Chronic myeloid leukemia (CML) is a myeloproliferative neoplasm. Tyrosine kinase inhibitors (TKIs) are commonly used to treat CML; however, drug resistance of CML cells to TKIs has limited their clinical application. Shikonin, a traditional Chinese herb, has long been used to treat leukemia in China, but the roles and related molecular mechanisms of shikonin treatment in CML remain unclear. Here, we aimed to evaluate the effects of shikonin on the proliferation, apoptosis, and migration of K562 cells, a CML cell line. METHODS: Firstly, K562 cell proliferation and apoptosis were tested by CCK8 assay and flow cytometry with Annexin V-FITC/PI staining. Cell migration was measured by Transwell migration assay. In addition, western blot was performed to determine the proteins (PI3K, Bax, Bcl-2, cleaved caspase-3, PTEN, p-AKT, AKT, CXCR4, SDF-1, CD44) involved in the mechanism of action of shikonin. Finally, neutrophils from peripheral blood of CML patients were obtained, and cell proliferation and apoptosis were tested by CCK8 assay and flow cytometry. RESULTS: Shikonin reduced the proliferation of K562 cells in a time- and dose-dependent manner and promoted the apoptosis of K562 cells. Moreover, shikonin increased the PTEN level and inactivated the PI3K/AKT signaling pathway, subsequently upregulating BAX in K562 cells. In addition, shikonin could block K562 cell migration via the CXCR4/SDF-1 axis. Finally, shikonin significantly inhibited the proliferation and promoted the apoptosis of neutrophils from CML patients. CONCLUSION: These results demonstrated that shikonin inhibits CML proliferation and migration and induces apoptosis by the PTEN/PI3K/AKT pathway, revealing the effects of shikonin therapy on CML.


Assuntos
Apoptose/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Naftoquinonas/farmacologia , PTEN Fosfo-Hidrolase/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , PTEN Fosfo-Hidrolase/genética , Fosfatidilinositol 3-Quinases/genética , Proteínas Proto-Oncogênicas c-akt/genética
13.
Biomed Pharmacother ; 103: 645-652, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29679906

RESUMO

Our previous study has reported that BCL6 corepressor like 1 (BCORL1) plays an oncogenic role in hepatocellular carcinoma (HCC) via promoting epithelial-mesenchymal transition (EMT) and tumor metastasis. However, the regulation of BCORL1 mediated by microRNAs (miRNAs) remains poorly known. The analysis of our clinical samples indicated that BCORL1 expression was markedly higher in HCC tissues than that in tumor-adjacent normal tissues. The Cancer Genome Atlas (TCGA) and Gene Expression Omnibus (GEO) datasets revealed that high BCORL1 expression associated with high tumor grade, advanced tumor stage and poor survival of HCC patients. miR-875-5p expression was down-regulated and negatively correlated with BCORL1 mRNA expression in HCC tissues. Furthermore, miR-876-5p inversely regulated BCORL1 abundance in HCC cells by directly targeting the 3'-untranslated region (3'-UTR) of BCORL1. Ectopic expression of miR-876-5p suppressed cell migration and invasion in both HCCLM3 and MHCC97H cells. In accordance, miR-876-5p knockdown promoted the metastatic behaviors of Hep3B cells. Mechanistically, miR-876-5p suppressed the EMT progression of HCC cells. HCC tissues with high miR-876-5p level showed a higher E-cadherin staining compared to cases with low miR-876-5p level. Moreover, the repression of cell metastasis mediated by miR-876-5p was rescued by BCORL1 restoration in HCCLM3 cells. Notably, low miR-876-5p expression associated with venous infiltration, high tumor grade and advanced tumor stage. HCC patients with low miR-876-5p expression had a significant poorer overall survival and disease-free survival. To conclude, miR-876-5p inhibits EMT progression, migration and invasion of HCC cells by targeting BCORL1. Therefore, miR-876-5p/BCORL1 axis may represent as a novel therapeutic target for HCC treatment.


Assuntos
Carcinoma Hepatocelular/metabolismo , Transição Epitelial-Mesenquimal/fisiologia , Neoplasias Hepáticas/metabolismo , MicroRNAs/biossíntese , Proteínas Repressoras/biossíntese , Idoso , Biomarcadores Tumorais/biossíntese , Carcinoma Hepatocelular/patologia , Movimento Celular/fisiologia , Feminino , Células Hep G2 , Humanos , Neoplasias Hepáticas/patologia , Masculino , Pessoa de Meia-Idade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA