Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Cell Infect Microbiol ; 14: 1468428, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-39359940

RESUMO

Background: Fowl adenovirus serotype 4 (FAdV-4) is the main pathogen of hepatitis-hydropericardium syndrome (HHS), which brings huge economic losses to the poultry industry worldwide. Fiber-1 protein plays an important role in viral infection and pathogenesis by binding directly to cellular receptors of FAdV-4. In particular, the knob domain of fiber-1 protein has been reported to induce the production of neutralizing antibodies and arouse protection against the lethal challenge of chickens with FAdV-4. Methods: The fiber-1 knob (F1K) protein was expressed in a prokaryotic expression system and purified using Ni-NTA affinity chromatography. Monoclonal antibodies (mAbs) against FAdV-4 were generated by immunizing BALB/c mice with the purified F1K protein and screened using a series of immunoassays. Potential B cell epitopes on the knob domain of fiber-1 protein were mapped using enzyme-linked immunosorbent assay (ELISA) and dot-blot. Precious location and crucial amino acids of the identified epitopes were determined using peptide array scanning, truncations and alanine-scanning mutagenesis. The epitopes were analyzed and visualized on the knob trimer of FAdV-4 fiber-1 protein using the PyMOL software. Results: Water-soluble recombinant fiber-1 knob (F1K) protein was obtained with the assistance of chaperone. Four monoclonal antibodies (5C10, 6F8, 8D8, and 8E8) against FAdV-4 were generated and characterized using indirect ELISA, Western blot, dot-blot, and immunological fluorescence assay (IFA). The mAbs were demonstrated to be from different hybridoma cell lines based on the sequences of the variable regions. Meanwhile, three distinct novel linear B-cell epitopes (319SDVGYLGLPPH329, 328PHTRDNWYV336, and 407VTTGPIPFSYQ417) on the knob domain of fiber-1 protein were identified and the key amino acid residues in the epitopes were determined. Structural analysis showed that the two adjacent epitopes 319SDVGYLGLPPH329 and 328PHTRDNWYV336 were exposed on the surface of the fiber-1 knob trimer, whereas the epitope 407VTTGPIPFSYQ417 was located inside of the spatial structure. Conclusion: This was the first identification of B-cell epitopes on the knob domain of fiber-1 protein and these findings provided a sound basis for the development of subunit vaccines, therapeutics, and diagnostic methods to control FAdV infections.


Assuntos
Anticorpos Monoclonais , Anticorpos Antivirais , Proteínas do Capsídeo , Mapeamento de Epitopos , Epitopos de Linfócito B , Camundongos Endogâmicos BALB C , Animais , Anticorpos Monoclonais/imunologia , Anticorpos Antivirais/imunologia , Camundongos , Epitopos de Linfócito B/imunologia , Proteínas do Capsídeo/imunologia , Proteínas do Capsídeo/genética , Galinhas , Aviadenovirus/imunologia , Aviadenovirus/genética , Ensaio de Imunoadsorção Enzimática , Anticorpos Neutralizantes/imunologia , Infecções por Adenoviridae/imunologia , Infecções por Adenoviridae/virologia , Doenças das Aves Domésticas/virologia , Doenças das Aves Domésticas/imunologia , Epitopos/imunologia
2.
Viruses ; 15(4)2023 03 23.
Artigo em Inglês | MEDLINE | ID: mdl-37112802

RESUMO

Outbreaks of hydropericardium hepatitis syndrome caused by fowl adenovirus serotype 4 (FAdV-4) with a novel genotype have been reported in China since 2015, with significant economic losses to the poultry industry. Fiber2 is one of the important structural proteins on FAdV-4 virions. In this study, the C-terminal knob domain of the FAdV-4 Fiber2 protein was expressed and purified, and its trimer structure (PDB ID: 7W83) was determined for the first time. A series of affinity peptides targeting the knob domain of the Fiber2 protein were designed and synthesized on the basis of the crystal structure using computer virtual screening technology. A total of eight peptides were screened using an immunoperoxidase monolayer assay and RT-qPCR, and they exhibited strong binding affinities to the knob domain of the FAdV-4 Fiber2 protein in a surface plasmon resonance assay. Treatment with peptide number 15 (P15; WWHEKE) at different concentrations (10, 25, and 50 µM) significantly reduced the expression level of the Fiber2 protein and the viral titer during FAdV-4 infection. P15 was found to be an optimal peptide with antiviral activity against FAdV-4 in vitro with no cytotoxic effect on LMH cells up to 200 µM. This study led to the identification of a class of affinity peptides designed using computer virtual screening technology that targeted the knob domain of the FAdV-4 Fiber2 protein and may be developed as a novel potential and effective antiviral strategy in the prevention and control of FAdV-4.


Assuntos
Infecções por Adenoviridae , Doenças das Aves Domésticas , Animais , Humanos , Infecções por Adenoviridae/epidemiologia , Antivirais/farmacologia , Sorogrupo , Galinhas , Adenoviridae/genética , Peptídeos/farmacologia , Peptídeos/genética
3.
Atherosclerosis ; 361: 18-29, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36306655

RESUMO

BACKGROUND AND AIMS: ApoEb is a zebrafish homologous to mammalian ApoE, whose deficiency would lead to lipid metabolism disorders (LMDs) like atherosclerosis. We attempted to knock out the zebrafish ApoEb, then establish a zebrafish model with LMD. METHODS: ApoEb was knocked out using the CRISPR/Cas9 system, and the accumulation of lipids was confirmed by Oil Red O staining, confocal imaging, and lipid measurements. The lipid-lowering effects of simvastatin (SIM), ezetimibe (EZE) and Xuezhikang (XZK), an extract derived from red yeast rice, were evaluated through in vivo imaging in zebrafish larvae. RESULTS: In the ApoEb mutant, significant vascular lipid deposition occurred, and lipid measurement performed in the whole-body homogenate of larvae and adult plasma showed significantly increased lipid levels. SIM, EZE and XZK apparently relieved hyperlipidemia in ApoEb mutants, and XZK had a significant inhibitory effect on the recruitment of neutrophils and macrophages. CONCLUSIONS: In this study, an LMD model has been established in ApoEb mutant zebrafish. We suggest that this versatile model could be applied in studying hypercholesterolemia and related vascular pathology in the context of early atherosclerosis, as well as the physiological function of ApoE.


Assuntos
Aterosclerose , Hipercolesterolemia , Hiperlipidemias , Animais , Peixe-Zebra/metabolismo , Metabolismo dos Lipídeos , Hipercolesterolemia/metabolismo , Ezetimiba , Aterosclerose/patologia , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Sinvastatina/farmacologia , Mamíferos/metabolismo
4.
Atherosclerosis ; 309: 56-64, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32882641

RESUMO

BACKGROUND AND AIMS: Angiogenesis is a key process for establishing functional vasculature during embryogenesis and involves different signaling mechanisms. The RNA binding protein Zfp36l1 was reported to be involved in various diseases in different species, including cardiovascular diseases. However, whether Zfp36l1b, one of the 2 paralogs of Zfp36l1 in zebrafish, works like mammalian Zfp36l1, and if the molecular mechanisms are different remains unclear. Here, we show that Zfp36l1b plays a crucial protective role in angiogenesis of zebrafish embryos. METHODS: We used transparent transgenic and wild-type zebrafish larvae to dynamically investigate the early stage of angiogenesis with confocal in vivo, after the knockdown of Zfp36l1b by morpholinos (MOs). In situ hybridization and fluorescence-activated cell sorting were performed to detect Zfp36l1b expression. mRNA rescue and CRISPR/Cas9 knockdown, and luciferase reporter experiments were performed to further explore the role of Zfp36l1b in angiogenesis. RESULTS: We found that knockdown of Zfp36l1b led to defected angiogenesis in intersomitic vessels and sub-intestinal veins (SIVs), which could be rescued by the addition of Zfp36l1b mRNA. Moreover, knockdown of Zfp36l1b suppressed Notch1b expression, while knockdown of Notch1b resulted in a partial relief of angiogenesis defects induced by Zfp36l1b down-regulation. Besides, Zfp36l1b knockdown alleviated the excessive branch of SIVs caused by Vegfa over-expression. CONCLUSIONS: Our results show that Zfp36l1b is responsible for establishing normal vessel circuits by affecting the extension of endothelial tip cells filopodia and the proliferation of endothelial cells partly through Notch1b/Fll4 suppression and synergistic function with Vegfa.


Assuntos
Células Endoteliais , Peixe-Zebra , Animais , Animais Geneticamente Modificados , Neovascularização Fisiológica , Proteínas de Peixe-Zebra/genética
5.
Arterioscler Thromb Vasc Biol ; 36(12): 2381-2393, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-27789478

RESUMO

OBJECTIVE: MicroRNA-126 (miR-126) is an endothelium-enriched miRNA and functions in vascular integrity and angiogenesis. The application of miRNA as potential biomarker and therapy target has been widely investigated in various pathological processes. However, its role in lymphatic diseases had not been widely explored. We aimed to reveal the role of miR-126 in lymphangiogenesis and the regulatory signaling pathways for potential targets of therapy. APPROACH AND RESULTS: Loss-of-function studies using morpholino oligonucleotides and CRISPR/Cas9 (clustered regularly interspaced short palindromic repeats/CRISPR-associated protein 9) system showed that silencing of miR-126a severely affected the formation of parachordal lymphangioblasts and thoracic duct in zebrafish embryos, although their development in miR-126b knockdown embryos was normal. Expression analyses by in situ hybridization and immunofluorescence indicated that miR-126a was expressed in lymphatic vessels, as well as in blood vessels. Time-lapse confocal imaging assay further revealed that knockdown of miR-126a blocked both lymphangiogenic sprouts budding from the posterior cardinal vein and lymphangioblasts extension along horizontal myoseptum. Bioinformatics analysis and in vivo report assay identified that miR-126a upregulated Cxcl12a by targeting its 5' untranslated region. Moreover, loss- and gain-of-function studies revealed that Cxcl12a signaling acted downstream of miR-126a during parachordal lymphangioblast extension, whereby Flt4 signaling acts as a cooperator of miR-126a, allowing it to modulate lymphangiogenic sprout formation. CONCLUSIONS: These findings demonstrate that miR-126a directs lymphatic endothelial cell sprouting and extension by interacting with Cxcl12a-mediated chemokine signaling and Vegfc-Flt4 signal axis. Our results suggest that these key regulators of lymphangiogenesis may be involved in lymphatic pathogenesis of cardiovascular diseases.


Assuntos
Quimiocina CXCL12/metabolismo , Linfangiogênese , MicroRNAs/metabolismo , Transdução de Sinais , Ducto Torácico/metabolismo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/metabolismo , Proteínas de Peixe-Zebra/metabolismo , Peixe-Zebra/metabolismo , Animais , Animais Geneticamente Modificados , Sistemas CRISPR-Cas , Movimento Celular , Proliferação de Células , Quimiocina CXCL12/genética , Biologia Computacional , Regulação da Expressão Gênica no Desenvolvimento , Inativação Gênica , Genótipo , Linfografia , MicroRNAs/genética , Microscopia Confocal , Morfolinos/genética , Morfolinos/metabolismo , Fenótipo , Ducto Torácico/embriologia , Fatores de Tempo , Imagem com Lapso de Tempo , Receptor 3 de Fatores de Crescimento do Endotélio Vascular/genética , Peixe-Zebra/embriologia , Peixe-Zebra/genética , Proteínas de Peixe-Zebra/genética
6.
Cardiovasc Res ; 103(1): 100-10, 2014 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-24675724

RESUMO

AIM: MicroRNAs (miRNAs) play key roles in inflammatory responses of macrophages. However, the function of miRNAs in macrophage-derived foam cell formation is unclear. Here, we investigated the role of miRNAs in macrophage-derived foam cell formation and atherosclerotic development. METHODS AND RESULTS: Using quantitative reverse transcription-PCR (qRT-PCR), we found that the level of miR-155 expression was increased significantly in both plasma and macrophages from atherosclerosis (ApoE(-/-)) mice. We identified that oxidized low density lipoprotein (oxLDL) induced the expression and release of miR-155 in macrophages, and that miR-155 was required to mediate oxLDL-induced lipid uptake and reactive oxygen species (ROS) production of macrophages. Furthermore, ectopic overexpression and knockdown experiments identified that HMG box-transcription protein1 (HBP1) is a novel target of miR-155. Knockdown of HBP1 enhanced lipid uptake and ROS production in oxLDL-stimulated macrophages, and overexpression of HBP1 repressed these effects. Furthermore, bioinformatics analysis identified three YY1 binding sites in the promoter region of pri-miR-155 and verified YY1 binding directly to its promoter region. Detailed analysis showed that the YY1/HDAC2/4 complex negatively regulated the expression of miR-155 to suppress oxLDL-induced foam cell formation. Importantly, inhibition of miR-155 by a systemically delivered antagomiR-155 decreased clearly lipid-loading in macrophages and reduced atherosclerotic plaques in ApoE(-/-) mice. Moreover, we observed that the level of miR-155 expression was up-regulated in CD14(+) monocytes from patients with coronary heart disease. CONCLUSION: Our findings reveal a new regulatory pathway of YY1/HDACs/miR-155/HBP1 in macrophage-derived foam cell formation during early atherogenesis and suggest that miR-155 is a potential therapeutic target for atherosclerosis.


Assuntos
Aterosclerose/etiologia , Células Espumosas/metabolismo , Células Espumosas/patologia , Proteínas de Grupo de Alta Mobilidade/antagonistas & inibidores , MicroRNAs/genética , MicroRNAs/metabolismo , Proteínas Repressoras/antagonistas & inibidores , Animais , Apolipoproteínas E/deficiência , Apolipoproteínas E/genética , Aterosclerose/metabolismo , Aterosclerose/patologia , Sítios de Ligação/genética , Estudos de Casos e Controles , Doença das Coronárias/genética , Doença das Coronárias/metabolismo , Técnicas de Silenciamento de Genes , Proteínas de Grupo de Alta Mobilidade/genética , Proteínas de Grupo de Alta Mobilidade/metabolismo , Histona Desacetilase 2/metabolismo , Histona Desacetilases/metabolismo , Humanos , Lipoproteínas LDL/metabolismo , Masculino , Camundongos , Camundongos Knockout , Monócitos/metabolismo , Regiões Promotoras Genéticas , Espécies Reativas de Oxigênio/metabolismo , Proteínas Repressoras/genética , Proteínas Repressoras/metabolismo , Fator de Transcrição YY1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA