Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Inorg Chem ; 63(22): 10324-10334, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38773678

RESUMO

Conductive metal-organic frameworks (cMOFs), as a kind of porous material, are considered to be highly promising materials in the field of electrochemistry due to their excellent conductivity. However, due to the low specific capacitance of pure cMOFs, their application in supercapacitors is limited. By virtue of the high theoretical capacity and excellent chemical stability of Co-based compounds, in this work, cMOFs' M-HHTP (M = Ni, Co, NiCo, HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) are grown in situ on Co(OH)2, CoP, and Co3O4 nanosheets, resulting in a series of electroactive compounds as electrode materials used in supercapacitors. Among all of the compounds, Ni-HHTP@Co(OH)2 shows the most excellent energy storage performance and outstanding cyclic stability in the application of aqueous asymmetric supercapacitors.

2.
Chemistry ; 30(31): e202400982, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38533890

RESUMO

Glucose holds significant importance in disease diagnosis as well as beverage quality monitoring. The high-efficiency electrochemical sensor plays a crucial role in the electrochemical conversion technology. Ni(OH)2 nanosheets are provided with high specific surface area and redox activity that are widely used in electrochemistry. Conductive metal-organic frameworks (cMOFs) perfectly combine the structural controllability of organic materials with the long-range ordering of inorganic materials that possess the characteristic of high electron mobility. Based on the above considerations, the combination of Ni(OH)2 and Ni-HHTP (HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) as an electrode modification material is designed to enhance electrochemical performance. In this work, to improve glucose detection, a sequence of Ni(OH)2@NiCo-HHTP and NiM-LDH@Ni-HHTP (M=Co2+, Mn2+, Cu2+, LDH=layered double hydroxide) are successfully synthesised by doping metals into Ni-HHTP and Ni(OH)2, respectively. As a result, NiCu-LDH@Ni-HHTP showed the best excellent glucose detection sensitivity.

3.
J Colloid Interface Sci ; 664: 617-625, 2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38490037

RESUMO

Lithium-sulfur batteries (LSBs) have emerged as a promising energy storage system, but their practical application is hindered by the polysulfide shuttle effect and sluggish redox kinetics. To address these challenges, we have developed CoO/MoO3@nitrogen-doped carbon (CoO/MoO3@NC) hollow heterostructures based on porous ZIF-67 as separators in LSBs. CoO has a strong anchoring effect on polysulfides. The heterostructure formed after the introduction of MoO3 increases the adsorption of polysulfides. The carbon coating outside the heterostructure improves the ion transmission efficiency of the battery, leading to enhanced electrochemical performance. The modified LSB demonstrates a low-capacity decay rate of 0.092% over 500 cycles at 0.5C, with a high discharge capacity of 613 mAh g-1 at 1C. This work presents a novel approach for the preparation of hollow heterostructure materials, aiming for high-performance LSBs.

4.
Chem Asian J ; 19(1): e202300819, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-37973612

RESUMO

Metal-organic frameworks (MOFs) have been widely investigated as functional materials with excellent properties. However, most MOFs are of poor electrical conductivity, which hinders their further application in electrochemical fields. Fortunately, the emergence of intrinsically conductive MOFs (c-MOFs) alleviates this problem. Layered double hydroxides (LDHs) possess Faraday redox reactivity, which is favorable to capacitors. In this paper, we combined c-MOFs with LDHs and prepared a series of NiCo-LDH@M-HHTP(-EtOH) (M=Ni or Co; HHTP=2,3,6,7,10,11-hexahydroxytriphenylene) multilayer nanoarrays, and the effects of solvent on the morphology and energy storage properties of the materials were investigated. When NiCo-LDH@Co-HHTP-EtOH is applied as an electrode material in supercapacitors, it exhibits a capacitance of 830 F g-1 at 1 A g-1 . Furthermore, it exhibits high energy density and excellent rate performance when assembled in aqueous asymmetric supercapacitors.

5.
Inorg Chem ; 62(39): 16038-16046, 2023 Oct 02.
Artigo em Inglês | MEDLINE | ID: mdl-37721422

RESUMO

As the demand for fuel continues to increase, the development of energy devices with excellent performance is crucial. Supercapacitors (SCs) are attracting attention for their advantages of high specific energy and a long cycle life. At present, the development of high-performance electrode materials is the main point for research and development of SCs. Transition metal sulfides have the advantages of a large interlayer space and high theoretical capacity, making them promising electrode materials. Herein, we reported a series of ultrathin mesoporous iron family element (Fe, Co, Ni) molybdenum disulfide (MxMo1-xS2/C, M = Fe, Co, and Ni) by a template method. The original monolayer mesoporous structure of MoS2/C was maintained, and accumulation and agglomeration of MoS2/C were avoided. Based on our investigations, the best performance was that of CoxMo1-xS2/C nanohybrids. Furthermore, the concentrations of Co and Mo ions were modulated to obtain the best performance, in which Mo and Co ions were released at 1:1, 1:2, and 1:3 ratios and they were named CoxMo1-xS2/C-1, CoxMo1-xS2/C-2, and CoxMo1-xS2/C-3, respectively. Overall, these materials represent a significant improvement and show promise as high-performance SC electrode materials due to their enhanced capacitance and stability. At a current density of 0.5 A g-1, CoxMo1-xS2/C-2 has the optimal specific capacitance of 184 F g-1. CoxMo1-xS2/C-2 as an SC electrode exhibited better reversible capacity and cycling stability than MoS2/C, which is an improvement over MoS2/C regarding reversible capacity and cycling stability.

6.
Inorg Chem ; 62(8): 3669-3678, 2023 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-36789454

RESUMO

Three-dimensional (3D) superstructure nanomaterials with special morphologies and novel properties have attracted considerable attention in the fields of optics, catalysis, and energy storage. The introduction of high entropy into ammonium phosphate (NPO·nH2O) has not yet attracted much attention in the field of energy storage materials. Herein, we systematically synthesize a series of 3D superstructures of NPOs·nH2O ranging from unitary, binary, ternary, and quaternary to high-entropy by a simple chemical precipitation method. These materials have similar morphology, crystallinity, and synthesis routes, which eliminates the performance difference caused by the interference of physical properties. Subsequently, cobalt-nickel ammonium phosphate (CoxNiy-NPO·nH2O) powders with different cobalt-nickel molar ratios were synthesized to predict the promoting effect of mixed transition metals in supercapacitors. It is found that the CoxNiy-NPO·nH2O 3D superstructures with a Co/Ni ratio of 1:1 show the best electrochemical performance for energy storage. The aqueous device shows a high energy density of 36.18 W h kg-1 at a power density of 0.71 kW kg-1, and when the power density is 0.65 kW kg-1, the energy density of the solid-state device is 13.83 W h kg-1. The work displays a facile method for the fabrication of 3D superstructures assembled by 2D nanosheets that can be applied in energy storage.

7.
ACS Appl Mater Interfaces ; 14(22): 25878-25885, 2022 Jun 08.
Artigo em Inglês | MEDLINE | ID: mdl-35618261

RESUMO

Metal-organic frameworks (MOFs) are promising electrochemical materials that possess large specific surface areas, high porosities, good adjustability, and high activities. However, many conventional MOFs exhibit poor conductivity, which hinders their application in electrochemistry. In recent years, conductive MOFs (cMOFs) have attracted a considerable attention. As an important transition metal hydroxide, Ni(OH)2 nanosheets exhibit a high theoretical specific capacitance and a high energy density but a poor electrical conductivity. In this study, we combined a typical cMOF(Ni-HHTP, HHTP = 2,3,6,7,10,11-hexahydroxybenzene) with Ni(OH)2 nanosheets and synthesized a series of Ni-HHTP@Ni(OH)2 nanoarrays. The composite materials exhibit a high electrical conductivity and ionic transfer efficiency and a good stability. Most importantly, our study reveals the chemical interaction between cMOFs and metal hydroxide composites and the relationship between facet exposure and the growth orientation of cMOFs. When Ni-HHTP@Ni(OH)2-2 was assembled as a positive electrode material in an aqueous asymmetric supercapacitor, 98% of the initial capacitance was maintained after 5000 cycles at a high current density of 3 A g-1. The findings of this study will provide meaningful insights into the design of cMOF composites combining other metal hydroxides.

8.
ACS Appl Mater Interfaces ; 13(28): 33083-33090, 2021 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-34235934

RESUMO

Metal organic frameworks (MOFs) have been widely researched and applied in many fields. However, the poor electrical conductivity of many traditional MOFs greatly limits their application in electrochemistry, especially in energy storage. Benefited from the full charge delocalization in the atomical plane, conductive MOFs (c-MOFs) exhibit good electrochemical performance. Besides, unlike graphene, c-MOFs are provided with 1D cylindrical channels, which can facilitate the ion transport and enable high ion conductivity. Transition-metal oxides (TMOs) are promising materials with good electrochemical energy storage performance due to their excellent oxidation-reduction activity. When composited with TMOs, the c-MOFs can significantly improve the capacitance and rate performance. In this work, for the first time, we designed serial MnO2@Ni-HHTP (HHTP = 2,3,6,7,10,11-hexahydroxytriphenylene) nanoarrays with different lengths and explored how the lengths influence the electrochemical energy storage performance. By taking advantage of the high redox activity of MnO2 and the excellent electron and ion conductivity in Ni-HHTP, when assembled as the positive electrode material in an aqueous asymmetric supercapacitor, the device displays high energy density, outstanding rate performance, and superior cycle stability. We believe that the results of this work would provide a good prospect for developing other c-MOF composites as a potential class of electrode materials in energy storage and conversion.

9.
Chem Asian J ; 16(7): 845-849, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33619885

RESUMO

Designing nanocomposites with good electrochemical properties is one of the challenges in constructing supercapacitors. Adjustable metal-organic frameworks (MOFs) have potential research value in improving charge storage and transfer due to their multi-porosity. Moreover, MOFs can serve as a precursor to various derivatives. Herein, a series of core-shell structures with macro-microporous ZIF-67 (M-ZIF-67) as the core and layered double hydroxide (LDH) as the shell were synthesized based on polystyrene spheres (PSs) template via a simple ion etching method. As a result, the sample of M-ZIF-67@LDH4 shows a specific capacitance of 597.6 F g-1 at 0.5 A g-1 and a high rate retention of 92% at 3 A g-1 .

10.
ACS Appl Mater Interfaces ; 12(22): 25037-25041, 2020 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-32378882

RESUMO

Exposing catalytically active metal sites in metal-organic frameworks with maintained porosity could accelerate electron transfer, leading to improved performances in electrochemical energy storage and conversion. Here, we report a series of quasi-ZIF-67 obtained from low temperature calcination of ZIF-67 for electrocatalytic oxygen evolution reaction (OER) and reveal the nanostructural structure via the spherical aberration-corrected transmission electron microscopy. The quasi-ZIF-67-350 not only possesses a large Brunauer-Emmett-Teller surface area of 2038.2 m2·g-1 but also presents an extremely low charge-transfer resistance of 15.0 Ω. In catalyzing the OER process, quasi-ZIF-67-350 displays a low overpotential of 286 mV at 10 mA cm-2 in the electrolyte of 1.0 M KOH. The acquired quasi-ZIF-67 demonstrates a high catalytic activity in OER, and the controlled calcination strategy undoubtedly paves a way in synthesizing low-cost and efficient electrocatalysts.

11.
J Colloid Interface Sci ; 563: 328-335, 2020 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-31887696

RESUMO

Two dimensional (2D) ultrathin nonprecious metal based catalysts show excellent electrocatalytic activities, due to the larger surface areas, more catalytic sites and more interconnected electron-transfer access than their bulk counterparts. Here, we synthesized cobalt pyrophosphate (Co2P2O7) nanosheets with different thickness by a simple and efficient one-step hydrothermal process. The catalytic performance of the obtained Co2P2O7 was investigated via diverse electrochemical measurement. Due to the unique 2D structure and the flexible coordination of pyrophosphate group, the as-prepared Co2P2O7 catalyst had excellent electrocatalytic performance and good stability, which could rank among the most active nonprecious metal catalysts for oxygen evolution reaction and oxygen reduction reaction. In addition, the ultrathin Co2P2O7 nanosheets exhibited good performance as the air cathode catalyst for zinc air batteries.

12.
Adv Mater ; 31(6): e1804740, 2019 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-30548705

RESUMO

Carbon materials derived from metal-organic frameworks (MOFs) have attracted much attention in the field of scientific research in recent years because of their advantages of excellent electron conductivity, high porosity, and diverse applications. Tremendous efforts are devoted to improving their chemical and physical properties, including optimizing the morphology and structure of the carbon materials, compositing them with other materials, and so on. Here, many kinds of carbon materials derived from metal-organic frameworks are introduced with a particular focus on their promising applications in batteries (lithium-ion batteries, lithium-sulfur batteries, and sodium-ion batteries), supercapacitors (metal oxide/carbon and metal sulfide/carbon), electrocatalytic reactions (oxygen reduction reaction, oxygen evolution reaction, and hydrogen evolution reaction), water treatment (MOF-derived carbon and other techniques), and other possible fields. To close, some existing problem and corresponding possible solutions are proposed based on academic knowledge from the reported literature, along with a great deal of experimental experience.

13.
Small ; 14(50): e1803576, 2018 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-30326178

RESUMO

To improve the efficiency of water electrolysis, developing efficient oxygen evolution reaction (OER) electrocatalysis is extremely important due to its four-electron transfer dynamics. In this work, a π-conjugated molecule (2,3,6,7,10,11-hexahydroxytriphenylene, HHTP), which can accelerate the electron transfer, is coated directly on pristine ZIF-67, resulting in a composite named HHTP@ZIF-67, via a simple one-step solvothermal method. The obtained HHTP@ZIF-67 possesses a Brunauer-Emmett-Teller surface area of 2013.9 m2 g-1 and displays microporous behavior, which can provide enough active sites for OER. The double-layer capacitance of HHTP@ZIF-67 is also enhanced, corresponding to an enlarged electrochemical active surface area. HHTP@ZIF-67 presents a quite low overpotential of 238 mV at 10 mA cm-2 in 1.0 m KOH. This material synthesized via the simple coating strategy is promising in the application of energy conversion devices.

14.
Chemistry ; 24(49): 12976-12982, 2018 Sep 03.
Artigo em Inglês | MEDLINE | ID: mdl-29924444

RESUMO

A donor-site engineering approach facilitates the formation of heteroleptic [Pd2 L2 L'2 ]4+ cage structures through a favored cis-'in2 /out2 ' spatial configuration of the methyl groups of 5- and 3-substituted bis-monodentate picolyl ligands with flat acridone and bent phenothiazine backbones. The heteroleptic cages were confirmed by ESI-MS and 2D NMR experiments as well as DFT calculations, which pointed toward a cis-configuration being energetically favored. This was further supported by the synthesis and X-ray structure of a previously unreported cis-[Pd(2-picoline)4 ]2+ complex. The formation of homoleptic structures, however, was met with considerable steric hindrance at the PdII centers, as observed by the formation of [Pd2 L3 (solvent)2 ]4+ and [Pd2 L2 (solvent)4 ]4+ species when only one type of acridone-based ligand was offered. In contrast, bent phenothiazine ligands with outside-pointing methyl groups showed the ability to form interpenetrated double-cages, as revealed by X-ray crystallography. The general route presented herein enables the assembly of uniform cis-[Pd2 L2 L'2 ]4+ coordination cages, thus furthering the possibility to increase structural and functional complexity in supramolecular systems.

15.
Angew Chem Int Ed Engl ; 57(41): 13652-13656, 2018 10 08.
Artigo em Inglês | MEDLINE | ID: mdl-29901844

RESUMO

A series of metal-mediated cages, having multiple cavities, was synthesized from PdII cations and tris- or tetrakis-monodentate bridging ligands and characterized by NMR spectroscopy, mass spectrometry, and X-ray methods. The peanut-shaped [Pd3 L14 ] cage deriving from the tris-monodentate ligand L1 could be quantitatively converted into its interpenetrated [5Cl@Pd6 L18 ] dimer featuring a linear {[Pd-Cl-]5 Pd} stack as an unprecedented structural motif upon addition of chloride anions. Small-angle neutron scattering (SANS) experiments showed that the cigar-shaped assembly with a length of 3.7 nm aggregates into mono-layered discs of 14 nm diameter via solvophobic interactions between the hexyl sidechains. The hepta-cationic [5Cl@Pd6 L18 ] cage was found to interact with polyanionic oligonucleotide double-strands under dissolution of the aggregates in water, rendering the compound class interesting for applications based on non-covalent DNA binding.

16.
Angew Chem Int Ed Engl ; 54(9): 2796-800, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25395277

RESUMO

A simple self-assembled [Pd2 L4 ] coordination cage consisting of four carbazole-based ligands was found to dimerize into the interpenetrated double cage [3 X@Pd4 L8 ] upon the addition of 1.5 equivalents of halide anions (X=Cl(-) , Br(-) ). The halide anions serve as templates, as they are sandwiched by four Pd(II) cations and occupy the three pockets of the entangled cage structure. The subsequent addition of larger amounts of the same halide triggers another structural conversion, now yielding a triply catenated link structure in which each Pd(II) node is trans-coordinated by two pyridine donors and two halide ligands. This simple system demonstrates how molecular complexity can increase upon a gradual change of the relative concentrations of reaction partners that are able to serve different structural roles.


Assuntos
Hidrocarbonetos Halogenados/síntese química , Compostos Organometálicos/química , Paládio/química , Hidrocarbonetos , Hidrocarbonetos Halogenados/química , Ligantes , Estrutura Molecular , Compostos Organometálicos/síntese química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA