Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Nanotechnol ; 2024 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-39039120

RESUMO

In the presence of a high magnetic field, quantum Hall systems usually host both even- and odd-integer quantized states because of lifted band degeneracies. Selective control of these quantized states is challenging but essential to understand the exotic ground states and manipulate the spin textures. Here we demonstrate the quantum Hall effect in Bi2O2Se thin films. In magnetic fields as high as 50 T, we observe only even-integer quantum Hall states, but there is no sign of odd-integer states. However, when reducing the thickness of the epitaxial Bi2O2Se film to one unit cell, we observe both odd- and even-integer states in this Janus (asymmetric) film grown on SrTiO3. By means of a Rashba bilayer model based on the ab initio band structures of Bi2O2Se thin films, we can ascribe the only even-integer states in thicker films to the hidden Rasbha effect, where the local inversion-symmetry breaking in two sectors of the [Bi2O2]2+ layer yields opposite Rashba spin polarizations, which compensate with each other. In the one-unit-cell Bi2O2Se film grown on SrTiO3, the asymmetry introduced by the top surface and bottom interface induces a net polar field. The resulting global Rashba effect lifts the band degeneracies present in the symmetric case of thicker films.

2.
ACS Macro Lett ; 13(8): 951-958, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39023514

RESUMO

Statistical copolymers have been extensively used in chemical industries and our daily lives, owing to their ease of synthesis and functionalization. However, self-assembly based on statistical copolymers has been haunted by high interfacial energy, poor stability, and low concentration. We proposed the statistical copolymerization-induced self-assembly (stat-PISA) as a general strategy for one-step preparing stable statistical copolymer assemblies with high solids content. The concept was demonstrated through a model dispersion polymerization system comprising a charged hydrophilic monomer and a core-forming monomer, producing spherical micelles via a spinodal decomposition mechanism with an interconnected network intermediate. The stat-PISA was tunable by varying the fraction of charged monomer, the polymer chain length, and the solids content. The statistical copolymer micelles were demonstrated to be a potential Pickering emulsifier with superior stabilizing performances compared to their block copolymer counterparts. The general applicability of stat-PISA was demonstrated by preparing statistical copolymer assemblies with varying surface charges and chemical compositions. Particularly, this strategy is feasible for conventional free radical polymerization, promising for industrial scale-up.

3.
Adv Mater ; 36(29): e2312072, 2024 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-38734889

RESUMO

Non-trivial topological structures, such as vortex-antivortex (V-AV) pairs, have garnered significant attention in the field of condensed matter physics. However, the detailed topological phase transition dynamics of V-AV pairs, encompassing behaviors like self-annihilation, motion, and dissociation, have remained elusive in real space. Here, polar V-AV pairs are employed as a model system, and their transition pathways are tracked with atomic-scale resolution, facilitated by in situ (scanning) transmission electron microscopy and phase field simulations. This investigation reveals that polar vortices and antivortices can stably coexist as bound pairs at room temperature, and their polarization decreases with heating. No dissociation behavior is observed between the V-AV phase at room temperature and the paraelectric phase at high temperature. However, the application of electric fields can promote the approach of vortex and antivortex cores, ultimately leading to their annihilation near the interface. Revealing the transition process mediated by polar V-AV pairs at the atomic scale, particularly the role of polar antivortex, provides new insights into understanding the topological phases of matter and their topological phase transitions. Moreover, the detailed exploration of the dynamics of polar V-AV pairs under thermal and electrical fields lays a solid foundation for their potential applications in electronic devices.

4.
ACS Appl Mater Interfaces ; 16(21): 27523-27531, 2024 May 29.
Artigo em Inglês | MEDLINE | ID: mdl-38745497

RESUMO

The pursuit of high-performance electronic devices has driven the research focus toward 2D semiconductors with high electron mobility and suitable band gaps. Previous studies have demonstrated that quasi-2D Bi2O2Se (BOSe) has remarkable physical properties and is a promising candidate for further exploration. Building upon this foundation, the present work introduces a novel concept for achieving nonvolatile and reversible control of BOSe's electronic properties. The approach involves the epitaxial integration of a ferroelectric PbZr0.2Ti0.8O3 (PZT) layer to modify BOSe's band alignment. Within the BOSe/PZT heteroepitaxy, through two opposite ferroelectric polarization states of the PZT layer, we can tune the Fermi level in the BOSe layer. Consequently, this controlled modulation of the electronic structure provides a pathway to manipulate the electrical properties of the BOSe layer and the corresponding devices.

5.
Nat Commun ; 15(1): 3418, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38653990

RESUMO

In single unit-cell FeSe grown on SrTiO3, the superconductivity transition temperature features a significant enhancement. Local phonon modes at the interface associated with electron-phonon coupling may play an important role in the interface-induced enhancement. However, such phonon modes have eluded direct experimental observations. The complicated atomic structure of the interface brings challenges to obtain the accurate structure-phonon relation knowledge. Here, we achieve direct characterizations of atomic structure and phonon modes at the FeSe/SrTiO3 interface with atomically resolved imaging and electron energy loss spectroscopy in an electron microscope. We find several phonon modes highly localized (~1.3 nm) at the unique double layer Ti-O terminated interface, one of which (~ 83 meV) engages in strong interactions with the electrons in FeSe based on ab initio calculations. This finding of the localized interfacial phonon associated with strong electron-phonon coupling provides new insights into understanding the origin of superconductivity enhancement at the FeSe/SrTiO3 interface.

6.
J Safety Res ; 88: 293-302, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38485371

RESUMO

INTRODUCTION: Safety is one of the critical and persistent challenges in the construction industry. Measuring safety performance could allow decision-makers to check safety production processes and enhance the health and safety environment. METHOD: This study developed a total-factor framework based on the global Data Envelopment Analysis (DEA) method to measure safety performance. The performance trend and influencing factors of pure technical efficiency and scale efficiency were separately investigated. The safety performance of construction employees in Australia was measured as a case study. RESULTS: The results demonstrate that the safety performance in the Australian construction industry has been evidently enhanced, which is mainly promoted by the progress of pure technical elements. The scale factors did not play a positive and important role in driving the performance. CONCLUSIONS: The increasing regional differences in safety performance could be reduced by learning the practices from the benchmark construction industry, such as a young worker program, small business safety program, workplace mental health program, and advanced construction technologies. PRACTICAL APPLICATIONS: The method can be utilized to measure safety performance and investigate the pathways to enhance performance without influencing production inputs and outcomes. The model and experiences of how to promote safety performance on the policymakers and employers were recognized.


Assuntos
Indústria da Construção , Local de Trabalho , Humanos , Austrália , Benchmarking , Inquéritos e Questionários
7.
J Am Chem Soc ; 146(3): 1926-1934, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38193748

RESUMO

Dielectric capacitors are highly desired in modern electronic devices and power systems to store and recycle electric energy. However, achieving simultaneous high energy density and efficiency remains a challenge. Here, guided by theoretical and phase-field simulations, we are able to achieve a superior comprehensive property of ultrahigh efficiency of 90-94% and high energy density of 85-90 J cm-3 remarkably in strontium titanate (SrTiO3), a linear dielectric of a simple chemical composition, by manipulating local symmetry breaking through introducing Ti/O defects. Atomic-scale characterizations confirm that these Ti/O defects lead to local symmetry breaking and local lattice strains, thus leading to the formation of the isolated ultrafine polar nanoclusters with varying sizes from 2 to 8 nm. These nanoclusters account for both considerable dielectric polarization and negligible polarization hysteresis. The present study opens a new realm of designing high-performance dielectric capacitors utilizing a large family of readily available linear dielectrics with very simple chemistry.

8.
Chem Asian J ; 19(5): e202301082, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38155528

RESUMO

The intricate nature of the surface structure of carbon dots (CDs) hinders a comprehensive understanding of their emission behavior. In this study, we employ two types of CDs created through acid-alkali treatments, one with surface protonation and the other with surface deprotonation, with the objective of investigating the impact of these surface modifications on carrier behavior using ultrafast spectroscopy techniques. TEM, XRD, FTIR and Raman spectra demonstrate the CDs' structure, featuring graphitic core and abundant surface functional groups. XPS confirms the successful surface modifications of CDs via protonation and deprotonation. Ultrafast transient absorption (TA) spectroscopy reveals that deprotonation modification may decelerate the relaxation process, thereby increasing the visible PL quantum yields (PLQY). Conversely, protonation may accelerate the relaxation process due to the induced low-energy absorption band, resulting in self-absorption and reduced PLQY. Furthermore, TA analysis of CDs in mixed solvents with different proportions of ethanol shows the beneficial effect of ethanol in decelerating the relaxation process, leading to an increased PLQY of 33.7 % for deprotonated CDs and 22.1 % for protonated CDs. This study illuminates the intricate relationship between surface deprotonation/protonation modifications and carrier behavior in CDs, offering a potential avenue for the design of high-brightness CDs for diverse applications.

9.
Nanomaterials (Basel) ; 14(1)2023 Dec 22.
Artigo em Inglês | MEDLINE | ID: mdl-38202489

RESUMO

The presence of surface trap states (STSs) is one of the key factors to affect the electronic and optical properties of quantum dots (QDs), however, the exact mechanism of how STSs influence QDs remains unclear. Herein, we demonstrated the impact of STSs on electron transfer in CdSe QDs and triplet-triplet energy transfer (TTET) from CdSe to surface acceptor using femtosecond transient absorption spectroscopy. Three types of colloidal CdSe QDs, each containing various degrees of STSs as evidenced by photoluminescence and X-ray photoelectron spectroscopy, were employed. Time-resolved emission and transient absorption spectra revealed that STSs can suppress band-edge emission effectively, resulting in a remarkable decrease in the lifetime of photoelectrons in QDs from 17.1 ns to 4.9 ns. Moreover, the investigation of TTET process revealed that STSs can suppress the generation of triplet exciton and effectively inhibit band-edge emission, leading to a significant decrease in TTET from CdSe QDs to the surface acceptor. This work presented evidence for STSs influence in shaping the optoelectronic properties of QDs, making it a valuable point of reference for understanding and manipulating STSs in diverse QDs-based optoelectronic applications involving electron and energy transfer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA