Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Environ Sci Technol ; 57(17): 6922-6933, 2023 05 02.
Artigo em Inglês | MEDLINE | ID: mdl-37071813

RESUMO

Rare earth elements (REEs) are critical for numerous modern technologies, and demand is increasing globally; however, production steps are resource-intensive and environmentally damaging. Some plant species are able to hyperaccumulate REEs, and understanding the biology behind this phenomenon could play a pivotal role in developing more environmentally friendly REE recovery technologies. Here, we identified a REE transporter NRAMP REE Transporter 1 (NREET1) from the REE hyperaccumulator fern Dicranopteris linearis. Although NREET1 belongs to the natural resistance-associated macrophage protein (NRAMP) family, it shares a low similarity with other NRAMP members. When expressed in yeast, NREET1 exhibited REE transport capacity, but it could not transport divalent metals, such as zinc, nickel, manganese, or iron. NREET1 is mainly expressed in D. linearis roots and predominantly localized in the plasma membrane. Expression studies in Arabidopsis thaliana revealed that NREET1 functions as a transporter mediating REE uptake and transfer from root cell walls into the cytoplasm. Moreover, NREET1 has a higher affinity for transporting light REEs compared to heavy REEs, which is consistent to the preferential enrichment of light REEs in field-grown D. linearis. We therefore conclude that NREET1 may play an important role in the uptake and consequently hyperaccumulation of REEs in D. linearis. These findings lay the foundation for the use of synthetic biology techniques to design and produce sustainable, plant-based REE recovery systems.


Assuntos
Gleiquênias , Proteínas de Membrana Transportadoras , Metais Terras Raras , Membrana Celular , Gleiquênias/metabolismo , Zinco/metabolismo
2.
Sci Total Environ ; 809: 152075, 2022 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-34890651

RESUMO

The exploitation of ion-adsorption rare earth element (REE) deposits in South China has left large areas of mine tailings. However, limited remediation practices on these tailings have been reported, and how the remediation strategies and economic plants cultivation affect the biogeochemical cycles of nutrients, REEs and Al remains unclear. The aim of the present study was to investigate the effects of the combination of the addition of soil amendment and the root development and activity of a fiber plant ramie (Boehmeria nivea L.) on the availability and distribution of nutrients, as well as of REEs and other potentially toxic elements (e.g. Al) in the soil-plant system. The results showed that the application of organic amendment and ramie planting induced a significant increase in soil pH, total carbon (C), nitrogen (N), and other nutrient (e.g. P and Ca) concentrations, while led to a decrease of 80-90% and 60-90% in soil extractable REE and Al concentrations respectively. Matrices of correlation showed that soil pH, total C, N, and P concentrations were among the most important factors controlling the availability of soil REEs and Al, and root characteristics (e.g. fine root length). The total C, N, P and extractable nutrient concentrations, and electrical conductivity were higher in the rhizosphere soils of ramie than those in the bulk soils. Moreover, more than 60% of the quantity of REE and Al in the whole ramie plant was stored within the thick roots. These results showed that, in addition to amendment, the effects induced by the roots of ramie could further improve soil properties through C input, nutrient mobilization and toxic element stabilization. Our study concludes that ramie planting with organic amendment is a promising phytostabilization strategy for the remediation of REE mine tailings in South China.


Assuntos
Boehmeria , Poluentes do Solo , Adsorção , Nutrientes , Solo , Poluentes do Solo/análise
3.
Front Microbiol ; 12: 751794, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35087482

RESUMO

Much effort has been made to remediate the degraded mine lands that bring severe impacts to the natural environments. However, it remains unclear what drives the recovery of biodiversity and ecosystem functions, making the restoration of these fragile ecosystems a big challenge. The interactions among plant species, soil communities, and abiotic conditions, i.e., plant-soil feedbacks (PSFs), significantly influence vegetation development, plant community structure, and ultimately regulate the recovery of ecosystem multi-functionality. Here, we present a conceptual framework concerning PSFs patterns and potential mechanisms in degraded mine lands. Different from healthy ecosystems, mine lands are generally featured with harsh physical and chemical properties, which may have different PSFs and should be considered during the restoration. Usually, pioneer plants colonized in the mine lands can adapt to the stressful environment by forming tolerant functional traits and gathering specific soil microbial communities. Understanding the mechanisms of PSFs would enhance our ability to predict and alter both the composition of above- and below-ground communities, and improve the recovery of ecosystem functions in degraded mine lands. Finally, we put forward some challenges of the current PSFs study and discuss avenues for further research in the ecological restoration of degraded mine lands.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA