Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 90
Filtrar
1.
Food Chem ; 448: 139086, 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-38520990

RESUMO

Amanita exitialis, a deadly mushroom found in eastern Asia, causes the highest death rates among all poisonous mushrooms in China. The aim of the present study was to develop an efficient, accurate, and user-friendly PCR-based method for identifying A. exitialis that could facilitate the prevention, diagnosis, and treatment of associated food poisoning. A. exitialis-specific primers and probes were designed based on the internal transcribed spacer region variations of 27 mushroom species. Specificity was confirmed using conventional and real-time PCR for 23 non-target mushroom species, including morphologically similar and closely related species. Compared to conventional PCR, real-time PCR was more sensitive (detectable DNA concentration: 1.36 × 10-2 ng/µL vs. 1.36 × 10-3) and efficient (analysis time: 1 h vs. 40 min). Furthermore, the real-time PCR results could be immediately visualized using amplification curve analysis. The results present two robust PCR-based methods for A. exitialis identification that can facilitate food safety.


Assuntos
Amanita , DNA Fúngico , Reação em Cadeia da Polimerase em Tempo Real , Amanita/genética , Amanita/química , Amanita/classificação , DNA Fúngico/genética , Primers do DNA/genética , Reação em Cadeia da Polimerase , China , Intoxicação Alimentar por Cogumelos/diagnóstico
2.
Food Chem ; 440: 138273, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38154285

RESUMO

A simple and reliable HPLC method was developed for quantification of chondroitin sulfate (CS). The procedure is based on precolumn hydrolysis of CS to liberate galactosamine and subsequent derivatization with 6-aminoquinolyl-N-hydroxysuccinimidyl carbamate. Hydrolysis and derivatization conditions were optimized. A linear correlation coefficient of 0.9999 was calculated within the range of 10-1500 µg/mL from the standard curve. The method produces good precision and good accuracy (100.75 % recovery). An advantage over other common methods is its ability to quantify CS of all molecular weights and structures, as evidenced by the determination of CS fractions with narrow molecular weight distributions obtained through depolymerization by different methods, while enzymatic HPLC was proven to be infeasible. Extraction recoveries of CS from monosaccharide mixed samples were > 93 %. The reliability was also validated by a small difference (-1.95 % to 4.12 %) relative to enzymatic HPLC results in analysing representative CS samples of different animal origins and suppliers.


Assuntos
Aminoquinolinas , Carbamatos , Sulfatos de Condroitina , Animais , Peso Molecular , Reprodutibilidade dos Testes , Aminoquinolinas/química , Cromatografia Líquida de Alta Pressão/métodos
3.
Plant Physiol Biochem ; 202: 107918, 2023 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-37619268

RESUMO

BACKGROUND: Somatic cell fusion is a process that transfers cytoplasmic and nuclear genes to create new germplasm resources. But our limited understanding of the physiological and molecular mechanisms that shape protoplast responses to fusion. METHOD: We employed flow cytometry, cytology, proteomics, and gene expression analysis to examine the sugarcane (Saccharum spp.) protoplast fusion. RESULTS: Flow cytometry analysis revealed the fusion rate of protoplasts was 1.95%, the FSC value and SSC of heterozygous cells was 1.17-1.47 times higher than that of protoplasts. The protoplasts viability decreased and the MDA increased after fusion. During fusion, the cell membranes were perforated to different degrees, nuclear activity was weakened, while microtubules depolymerized and formed several short rod like structures in the protoplasts. The most abundant proteins during fusion were mainly involved in RNA processing and modification, cell cycle control, cell division, chromosome partition, nuclear structure, extracellular structures, and nucleotide transport and metabolism. Moreover, the expression of key regeneration genes, such as WUS, GAUT, CESA, PSK, Aux/IAA, Cdc2, Cyclin D3, Cyclin A, and Cyclin B, was significantly altered following fusion. PURPOSE AND SIGNIFICANCE: Overall, our findings provide a theoretical basis that increases our knowledge of the mechanisms underlying protoplast fusion.


Assuntos
Protoplastos , Saccharum , Saccharum/genética , Citometria de Fluxo , Proteômica , Citoplasma
4.
PeerJ ; 11: e15385, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37187513

RESUMO

The interactions between plant viruses and insect vectors are very complex. In recent years, RNA sequencing data have been used to elucidate critical genes of Tomato spotted wilt ortho-tospovirus (TSWV) and Frankliniella occidentalis (F. occidentalis). However, very little is known about the essential genes involved in thrips acquisition and transmission of TSWV. Based on transcriptome data of F. occidentalis infected with TSWV, we verified the complete sequence of the E3 ubiquitin-protein ligase UBR7 gene (UBR7), which is closely related to virus transmission. Additionally, we found that UBR7 belongs to the E3 ubiquitin-protein ligase family that is highly expressed in adulthood in F. occidentalis. UBR7 could interfere with virus replication and thus affect the transmission efficiency of F. occidentalis. With low URB7 expression, TSWV transmission efficiency decreased, while TSWV acquisition efficiency was unaffected. Moreover, the direct interaction between UBR7 and the nucleocapsid (N) protein of TSWV was investigated through surface plasmon resonance and GST pull-down. In conclusion, we found that UBR7 is a crucial protein for TSWV transmission by F. occidentalis, as it directly interacts with TSWV N. This study provides a new direction for developing green pesticides targeting E3 ubiquitin to control TSWV and F. occidentalis.


Assuntos
Tisanópteros , Tospovirus , Animais , Tisanópteros/genética , Tospovirus/genética , Doenças das Plantas , Insetos , Ubiquitina-Proteína Ligases/genética
5.
Carbohydr Polym ; 311: 120488, 2023 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-37028853

RESUMO

Low molecular weight (LWM) hyaluronic acid (HA) and chondroitin sulfate (CS) have a wide range of applications. To determine their molecular weight (MW), we developed a gel permeation chromatography (GPC) method, which is calibrated based on serrated peaks in the chromatograms. MW calibrants were obtained from the enzymolysis of HA and CS using hyaluronidase. The identical structure of calibrants and samples ensured the soundness of the method. The highest confidence MWs were up to 14,454 and 14,605 for HA and CS, respectively, and the standard curves showed very high correlation coefficients. Thanks to the changeless relationship between MW and its contribution to the GPC integral, the second calibration curves could be derived via one GPC column, also embodied correlation coefficients of >0.9999. The discrepancies of MW values were minuscule, and the measurement of a sample could be conducted in <30 min. The accuracy of the method was verified using LWM heparins, and the measured Mw values showed a 1.2 %-2.0 % error relative to pharmacopeia results. The MW results obtained for LWM-HA and LWM-CS samples were also consistent with the results obtained by multiangle laser light scattering. The method was also verified be able to measure the very low MWs.


Assuntos
Sulfatos de Condroitina , Ácido Hialurônico , Ácido Hialurônico/química , Peso Molecular , Heparina de Baixo Peso Molecular , Cromatografia em Gel
6.
Front Plant Sci ; 13: 1066073, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36518493

RESUMO

The protoplast experimental system eis an effective tool for functional genomics and cell fusion breeding. However, the physiological and molecular mechanisms of protoplast response to enzymolysis are not clear, which has become a major obstacle to protoplast regeneration. Here, we used physiological, cytological, proteomics and gene expression analysis to compare the young leaves of sugarcane and enzymolized protoplasts. After enzymatic digestion, we obtained protoplasts with viability of > 90%. Meanwhile, the content of malondialdehyde, an oxidation product, increased in the protoplasts following enzymolysis, and the activity of antioxidant enzymes, such as peroxidase (POD), catalase (CAT), acid peroxidase (APX), and O2-, significantly decreased. Cytologic analysis results showed that, post enzymolysis, the cell membranes were perforated to different degrees, the nuclear activity was weakened, the nucleolus structure was not obvious, and the microtubules depolymerized and formed several short rod-like structures in protoplasts. In this study, a proteomics approaches was used to identify proteins of protoplasts in response to the enzymatic digestion process. GO, KEGG, and KOG enrichment analyses revealed that the abundant proteins were mainly involved in bioenergetic metabolism, cellular processes, osmotic stress, and redox homeostasis of protoplasts, which allow for protein biosynthesis or degradation. RT-qPCR analysis revealed that the expression of osmotic stress resistance genes, such as DREB, WRKY, MAPK4, and NAC, was upregulated, while that of key regeneration genes, such as CyclinD3, CyclinA, CyclinB, Cdc2, PSK, CESA, and GAUT, was significantly downregulated in the protoplasts. Hierarchical clustering and identification of redox proteins and oxidation products showed that these proteins were involved in dynamic networks in response to oxidative stress after enzymolysis. Our findings can facilitate the development of a standard system to produce regenerated protoplasts using molecular markers and antibody detection of enzymolysis.

7.
Front Plant Sci ; 13: 844918, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35755651

RESUMO

Phytolacca is the largest genus of Phytolaccaceae. Owing to interspecific hybridization, infraspecific variation, and apparent weak genetic control of many qualitative characters, which have obscured boundaries between species, the classification and phylogenetic relationships of this genus are unclear. Native Phytolacca is disjunctly distributed in America, eastern Asia, and Africa, and the biogeographic history of the genus remained unresolved. In this study, we used the whole chloroplast genome and three markers (nrDNA, rbcL, and matK) to reconstruct phylogenetic relationships within Phytolacca, analyze divergence times, and infer biogeographic histories. The phylogenetic results indicate that Phytolacca is monophyletic, which is inconsistent with the infrageneric classification based on morphology. According to the divergence time estimation, Phytolacca began to diversify at approximately 20.30 Ma during the early Miocene. Central America, including Mexico, Costa Rica, and Colombia, is the center of species diversity. Biogeographical analysis indicated five main dispersal events and Phytolacca originated from Central and South America. Birds may be the primary agents of dispersal because of the fleshy fruiting of Phytolacca. This study extended sampling and added more genetic characteristics to infer the evolutionary history of Phytolacca, providing new insights for resolving the classification and elucidating the dispersal events of Phytolacca.

9.
Genomics Proteomics Bioinformatics ; 20(2): 394-404, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35623445

RESUMO

Quarantine insects are economically important pests that frequently invade new habitats. A rapid and accurate monitoring method to trace the geographical sources of invaders is required for their prevention, detection, and eradication. Current methods based on genetics are typically time-consuming. Here, we developed a novel tracing method based on insect gut microbiota. The source location of the insect gut microbiota can be used to rapidly determine the geographical origin of the insect. We analyzed 179 gut microbiota samples from 591 individuals of 22 quarantine insect species collected from 36 regions in China. The gut microbiota of these insects primarily included Actinobacteria, Bacteroidetes, Cyanobacteria, Firmicutes, Proteobacteria, and Tenericutes. The diversity of the insect gut microbiota was closely associated with geographical and environmental factors. Different insect species could be distinguished based on the composition of gut microbiota at the phylum level. Populations of individual insect species from different regions could be distinguished based on the composition of gut microbiota at the phylum, class, and order levels. A method for determining the geographical origins of invasive insect species has been established; however, its practical application requires further investigations before implementation.


Assuntos
Microbioma Gastrointestinal , Humanos , Animais , RNA Ribossômico 16S/genética , Quarentena , Insetos , China
10.
Front Plant Sci ; 13: 745708, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35283891

RESUMO

The use of omics techniques to analyze the differences between genetic engineering organisms and their parents can identify unintended effects and explore whether such unintended effects will have negative consequences. In order to evaluate whether genetic engineering will cause changes in crops beyond the changes introduced by conventional plant breeding, we compared the extent of transcriptome and metabolome modification in the leaves of three lines developed by RNA interference (RNAi)-based genetic engineering and three lines developed by conventional breeding. The results showed that both types of plant breeding methods can manifest changes at the short interfering RNA (siRNA), transcriptomic, and metabolic levels. Relative expression analysis of potential off-target gene revealed that there was no broad gene decline in the three RNAi-based genetic engineering lines. We found that the number of DEGs and DAMs between RNAi-based genetic engineering lines and the parental line was less than that between conventional breeding lines. These unique DEGs and DAMs between RNAi-based genetic engineering lines and the parental lines were not enriched in detrimental metabolic pathways. The results suggest that RNAi-based genetic engineering do not cause unintended effects beyond those found in conventional breeding in maize.

11.
Virus Res ; 311: 198704, 2022 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-35139407

RESUMO

Host plants deploy the small RNA (sRNA)-directed RNA silencing pathway to resist invasion by acellular microorganisms (viruses/viroids/satellites), and, in turn, this pathway is exploited by pathogenic agents to create an environment conducive to infection. Previous known sRNA-RNA systems consist of host endogenous microRNAs (miRNAs) mediating the regulation of host mRNAs and virus/viroid/satellite-derived small interfering RNAs (vsiRNAs) targeting their genomic RNAs. However, more in-depth explorations have substantially expanded the understanding of the complexity of sRNA-RNA regulatory networks. Here, we review some recently discovered sRNA-mediated regulatory systems. Specifically, in addition to virus-encoded proteins acting as virulence factors, vsiRNAs can serve as important pathogenic determinants targeting host mRNAs and noncoding RNAs to promote virus/viroid/satellite infection and trigger symptoms that may be side effects of infection. Additionally, virus-activated but host-derived siRNAs (vasiRNAs) regulate endogenous plant gene expression related to virus resistance or pathogenicity. The inhibitory effect of miRNAs on plant endogenous mRNAs and viral RNAs (vRNAs) has also been identified. Furthermore, siRNA-based interregulation occurring between viruses and their parasite satellite RNAs (satRNAs) enables coexisting virus-satRNA-plant homoeostasis. Thus, the underlying mechanisms of plant-virus/viroid/satellite competition and symbiosis are largely obscured by these diverse sRNA-RNA combinations. Guided by the intricate regulatory network-based principle at the RNA level, practically applicable and feasible strategies have been developed for the management of plant viruses/viroids/satellites for which effective control measures are lacking.


Assuntos
MicroRNAs , Vírus de Plantas , Viroides , MicroRNAs/genética , Doenças das Plantas , Vírus de Plantas/genética , Vírus de Plantas/metabolismo , Plantas , RNA Interferente Pequeno/genética , RNA Viral/genética , RNA Viral/metabolismo , Viroides/genética
12.
Int J Biol Macromol ; 205: 316-328, 2022 Apr 30.
Artigo em Inglês | MEDLINE | ID: mdl-35192905

RESUMO

Conserved and multifunctional Geminivirus Replication-associated Protein (Rep) specifically recognizes the replication origin and initiates viral DNA replication. We report the X-ray crystallography-based structures of two complexes containing the N-terminal domain (5-117aa) of Tomato yellow leaf curl virus (TYLCV) Rep: the catalytically-dead Rep in complex with nonanucleotide ssDNA (Rep5-117 Y101F-ssDNA) as well as the catalytically-active phosphotyrosine covalent adduct (Rep5-117-ssDNA). These structures provide functional insight into the role of Rep in viral replication. Metal ions stabilize the DNA conformation by interacting with the phosphate group of adenine and thus promote formation of the catalytic center. Furthermore, we identified a compound that inhibits the binding of Rep to ssDNA and dsDNA and found that the addition of metal ions compromises the inhibitory effectiveness of this compound. This study demonstrates the mechanism of DNA recognition and cleavage process of viral Rep, emphasizing the role of metal ions.


Assuntos
Begomovirus , Solanum lycopersicum , Begomovirus/genética , Begomovirus/metabolismo , Replicação do DNA , DNA Viral/genética , DNA Viral/metabolismo , Solanum lycopersicum/genética , Replicação Viral/genética
13.
Commun Biol ; 5(1): 25, 2022 01 11.
Artigo em Inglês | MEDLINE | ID: mdl-35017661

RESUMO

Bactrocera dorsalis is an invasive polyphagous pest causing considerable ecological and economic damage worldwide. We report a high-quality chromosome-level genome assembly and combine various transcriptome data to explore the molecular mechanisms of its rapid adaptation to new environments. The expansions of the DDE transposase superfamily and key gene families related to environmental adaptation and enrichment of the expanded and unique gene families in metabolism and defence response pathways explain its environmental adaptability. The relatively high but not significantly different expression of heat-shock proteins, regardless of the environmental conditions, suggests an intrinsic mechanism underlying its adaptation to high temperatures. The mitogen-activated protein kinase pathway plays a key role in adaptation to new environments. The prevalence of duplicated genes in its genome explains the diversity in the B. dorsalis complex. These findings provide insights into the genetic basis of the invasiveness and diversity of B. dorsalis, explaining its rapid adaptation and expansion.


Assuntos
Cromossomos de Insetos/genética , Genoma de Inseto/genética , Tephritidae , Termotolerância/genética , Transcriptoma/genética , Animais , Feminino , Genes Duplicados/genética , Masculino , Tephritidae/genética , Tephritidae/patogenicidade , Tephritidae/fisiologia
14.
Sci Rep ; 11(1): 2050, 2021 01 21.
Artigo em Inglês | MEDLINE | ID: mdl-33479482

RESUMO

Genetic engineering (GM) has great potential to improve maize productivity, but rises some concerns on unintended effects, and equivalent as their comparators. There are some limitations through targeted analysis to detect the UE in genetically modified organisms in many previous studies. We here reported a case-study on the effects of introducing herbicides and insect resistance (HIR) gene cassette on molecular profiling (transcripts and metabolites) in a popular maize variety Zhengdan958 (ZD958) in China. We found that introducing HIR gene cassette bring a limited numbers of differential abundant genes (DAGs) or differential abundant metabolites (DAMs) between transgenic events and non-transgenic control. In contrast, averaged 10 times more DAGs and DAMs were observed when performed comparison under different growing environments in three different ecological regions of China than the numbers induced by gene effects. Major biological pathways relating to stress response or signaling transduction could explain somehow the effects of growing environments. We further compared two transgenic events mediated ZD958 (GM-ZD958) with either transgenic parent GM-Z58, and other genetic background nonGM-Z58, nonGM-ZD958, and Chang7-2. We found that the numbers of DAGs and DAMs between GM-ZD958 and its one parent maize variety, Z58 or GM-Z58 is equivalent, but not Chang7-2. These findings suggest that greater effects due to different genetic background on altered molecular profiling than gene modification itself. This study provides a case evidence indicating marginal effects of gene pleiotropic effects, and environmental effects should be emphasized.


Assuntos
Resistência a Herbicidas/genética , Plantas Geneticamente Modificadas/genética , Transcriptoma/genética , Zea mays/genética , Animais , Resistência à Doença/genética , Regulação da Expressão Gênica de Plantas/genética , Engenharia Genética , Herbicidas/efeitos adversos , Insetos/genética , Insetos/patogenicidade , Metabolômica , Doenças das Plantas/genética , Doenças das Plantas/parasitologia , Plantas Geneticamente Modificadas/crescimento & desenvolvimento , Plantas Geneticamente Modificadas/parasitologia , Zea mays/crescimento & desenvolvimento , Zea mays/parasitologia
15.
Sci Rep ; 10(1): 11735, 2020 07 16.
Artigo em Inglês | MEDLINE | ID: mdl-32678146

RESUMO

The taxonomically challenging genus Amaranthus (Family Amaranthaceae) includes important agricultural weed species that are being spread globally as grain contaminants. We hypothesized that the ALS gene will help resolve these taxonomic challenges and identify potentially harmful resistant biotypes. We obtained 153 samples representing 26 species from three Amaranthus subgenera and included in that incorporated ITS, ALS (domains C, A and D) and ALS (domains B and E) sequences. Subgen. Albersia was well supported, but subgen. Amaranthus and subgen. Acnida were not. Amaranthus tuberculatus, A. palmeri and A. spinosus all showed different genetic structuring. Unique SNPs in ALS offered reliable diagnostics for most of the sampled Amaranthus species. Resistant ALS alleles were detected in sixteen A. tuberculatus samples (55.2%), eight A. palmeri (27.6%) and one A. arenicola (100%). These involved Ala122Asn, Pro197Ser/Thr/Ile, Trp574Leu, and Ser653Thr/Asn/Lys substitutions, with Ala122Asn, Pro197Thr/Ile and Ser653Lys being reported in Amaranthus for the first time. Moreover, different resistant mutations were present in different A. tuberculatus populations. In conclusion, the ALS gene is important for species identification, investigating population genetic diversity and understanding resistant evolution within the genus Amaranthus.


Assuntos
Amaranthus/classificação , Amaranthus/efeitos dos fármacos , Amaranthus/genética , Resistência a Herbicidas/genética , Herbicidas/farmacologia , Filogenia , Transportadores de Cassetes de Ligação de ATP/genética , Alelos , DNA Espaçador Ribossômico , Polimorfismo de Nucleotídeo Único
16.
PLoS One ; 14(8): e0221099, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31425544

RESUMO

The pinewood nematode (PWN), Bursaphelenchus xylophilus, is an important plant-parasitic nematode that can cause severe mortality of pine trees. This PWN-induced harm to plants may be closely related to the abundance and diversity of the symbiotic microorganisms of the parasitic nematode. In this study, nematodes were divided into untreated and antibiotic-treated groups. Nematodes were treated by fumigation with different amounts of α-pinene, and the resultant mortality rates were analyzed statistically. Concentrations of symbiotic bacteria were calculated as colony-forming units per nematode. High-throughput sequencing was used to investigate the bacterial community structure. The results showed that the mortality of nematodes increased slightly with an increasing concentration of α-pinene, and nematodes untreated with antibiotics were more sensitive to α-pinene than those treated with antibiotics. The highest abundance of symbiotic bacteria was obtained via medium and low levels of α-pinene, but for which community diversity was the lowest (Shannon and Simpson indexes). The proportion of Pseudomonas spp. in the symbiotic bacteria of nematodes without antibiotics was relatively high (more than 70%), while that of Stenotrophomonas spp. was low (6%-20%). However, the proportion of Stenotrophomonas spp. was larger than that of Pseudomonas spp in the symbiotic bacteria associated with the antibiotic-treated nematodes. Pseudomonas sp. increased after pinene treatment, whereas Stenotrophomonas spp. decreased. These results indicate that although α-pinene has low toxicity to PWNs over a short time period, α-pinene ultimately influences the abundance and community diversity of the symbiotic bacteria of these nematodes; this influence may potentially disturb the development and reproduction of nematodes in the process of infecting pine trees.


Assuntos
Monoterpenos Bicíclicos/administração & dosagem , Pinus/parasitologia , Doenças das Plantas/prevenção & controle , Pseudomonas/efeitos dos fármacos , Rabditídios/efeitos dos fármacos , Stenotrophomonas/efeitos dos fármacos , Animais , Monoterpenos Bicíclicos/toxicidade , Contagem de Colônia Microbiana , DNA Bacteriano/isolamento & purificação , Relação Dose-Resposta a Droga , Fumigação , Doenças das Plantas/parasitologia , Pseudomonas/genética , Pseudomonas/isolamento & purificação , Rabditídios/microbiologia , Stenotrophomonas/genética , Stenotrophomonas/isolamento & purificação , Simbiose/efeitos dos fármacos
17.
Int J Mol Sci ; 20(17)2019 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-31450868

RESUMO

The clustered regularly interspaced short palindromic repeats (CRISPR)/CRISPR-associated protein (Cas) system has been widely applied in functional genomics research and plant breeding. In contrast to the off-target studies of mammalian cells, there is little evidence for the common occurrence of off-target sites in plants and a great need exists for accurate detection of editing sites. Here, we summarized the precision of CRISPR/Cas9-mediated mutations for 281 targets and found that there is a preference for single nucleotide deletions/insertions and longer deletions starting from 40 nt upstream or ending at 30 nt downstream of the cleavage site, which suggested the candidate sequences for editing sites detection by whole-genome sequencing (WGS). We analyzed the on-/off-target sites of 6 CRISPR/Cas9-mediated Arabidopsis plants by the optimized method. The results showed that the on-target editing frequency ranged from 38.1% to 100%, and one off target at a frequency of 9.8%-97.3% cannot be prevented by increasing the specificity or reducing the expression level of the Cas9 enzyme. These results indicated that designing guide RNA with high specificity may be the preferred factor to avoid the off-target events, and it is necessary to predict or detect off-target sites by WGS-based methods for preventing off targets caused by genome differences in different individuals.


Assuntos
Arabidopsis/genética , Sistemas CRISPR-Cas , Edição de Genes , Mutagênese , Genoma de Planta , Genômica/métodos , Mutação , Fenótipo , Plantas Geneticamente Modificadas , Sequenciamento Completo do Genoma
18.
Plant Cell Rep ; 38(9): 1031-1038, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31065780

RESUMO

Plants have developed diverse molecular mechanisms to resist viruses. RNA silencing plays a dominant role in antiviral defense. Recent studies have correlated plant antiviral silencing to epigenetic modification in genomic DNA and protein by remodeling the expression levels of coding genes. The plant host methylation level is reprogrammed in response to viral challenge. Genomes of some viruses have been implicated in the epigenetic modification via small RNA-mediated transcriptional gene silencing and post-transcriptional gene silencing. These mechanisms can be primed prior to a virus attack through methylation changes for antiviral defense. This review highlights the findings concerning the methylation changes in plant-virus interactions and demonstrates a possible direction to improve the understanding of plant host methylation regulation in response to viral infection.


Assuntos
Epigênese Genética , Regulação da Expressão Gênica de Plantas , Interações Hospedeiro-Patógeno , Doenças das Plantas/imunologia , Vírus de Plantas/fisiologia , Plantas/genética , RNA Interferente Pequeno/genética , Metilação de DNA , Epigenômica , Inativação Gênica , Doenças das Plantas/virologia , Plantas/imunologia , Plantas/virologia , Interferência de RNA
19.
Sci Rep ; 9(1): 7311, 2019 05 13.
Artigo em Inglês | MEDLINE | ID: mdl-31086245

RESUMO

To solve the problem of the unauthorized GMP components within import and export goods, the LI-US (Logic Identification of unauthorized GMP content by Universal-primer Suspension-array) system, which takes advantage of suspension array and logic calculator, was developed in the present study. Seventeen signal input channels have been optimized and validated in our research to ensure the multiplex practicality of the LI-US system. Three LI-US logic gates, including a YES gate, an OR gate and an AND gate, were designed as different detection strategies for GMP identification. The feasibility and specificity of the LI-US system were validated in the present study. Combining the optimization and evaluation of the signal input procedure, the sensitivity of this LI-US system reached 0.05% of the GMP mass concentration. The practicability evaluation of LI-US demonstrated its application within different substrates and varieties. In conclusion, the LI-US system was developed with extremely high specificity, sensitivity and practicability among different substrates and varieties, which could meet the demands of unauthorized GMP contents for both import and export goods.

20.
Biomed Res Int ; 2019: 5046958, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31016191

RESUMO

Sorghum comprises 31 species that exhibit considerable morphological and ecological diversity. The phylogenetic relationships among Sorghum species still remain unresolved due to lower information on the traditional DNA markers, which provides a limited resolution for identifying Sorghum species. In this study, we sequenced the complete chloroplast genomes of Sorghum sudanense and S. propinquum and analyzed the published chloroplast genomes of S. bicolor and S. timorense to retrieve valuable chloroplast molecular resources for Sorghum. The chloroplast genomes ranged in length from 140,629 to 140,755 bp, and their gene contents, gene orders, and GC contents were similar to those for other Poaceae species but were slightly different in the number of SSRs. Comparative analyses among the four chloroplast genomes revealed 651 variable sites, 137 indels, and nine small inversions. Four highly divergent DNA regions (rps16-trnQ, trnG-trnM, rbcL-psaI, and rps15-ndhF), which were suitable for phylogenetic and species identification, were detected in the Sorghum chloroplast genomes. A phylogenetic analysis strongly supported that Sorghum is a monophyletic group in the tribe Andropogoneae. Overall, the genomic resources in this study could provide potential molecular markers for phylogeny and species identification in Sorghum.


Assuntos
Cloroplastos/genética , Genoma de Cloroplastos/genética , Sorghum/genética , Composição de Bases/genética , DNA de Cloroplastos/genética , Ordem dos Genes/genética , Marcadores Genéticos/genética , Genômica/métodos , Filogenia , Poaceae/genética , Análise de Sequência de DNA/métodos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA