Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nature ; 627(8005): 797-804, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38480894

RESUMO

Evidence shows a continuing increase in the frequency and severity of global heatwaves1,2, raising concerns about the future impacts of climate change and the associated socioeconomic costs3,4. Here we develop a disaster footprint analytical framework by integrating climate, epidemiological and hybrid input-output and computable general equilibrium global trade models to estimate the midcentury socioeconomic impacts of heat stress. We consider health costs related to heat exposure, the value of heat-induced labour productivity loss and indirect losses due to economic disruptions cascading through supply chains. Here we show that the global annual incremental gross domestic product loss increases exponentially from 0.03 ± 0.01 (SSP 245)-0.05 ± 0.03 (SSP 585) percentage points during 2030-2040 to 0.05 ± 0.01-0.15 ± 0.04 percentage points during 2050-2060. By 2060, the expected global economic losses reach a total of 0.6-4.6% with losses attributed to health loss (37-45%), labour productivity loss (18-37%) and indirect loss (12-43%) under different shared socioeconomic pathways. Small- and medium-sized developing countries suffer disproportionately from higher health loss in South-Central Africa (2.1 to 4.0 times above global average) and labour productivity loss in West Africa and Southeast Asia (2.0-3.3 times above global average). The supply-chain disruption effects are much more widespread with strong hit to those manufacturing-heavy countries such as China and the USA, leading to soaring economic losses of 2.7 ± 0.7% and 1.8 ± 0.5%, respectively.

3.
PeerJ ; 11: e15626, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37465152

RESUMO

Ectomycorrhizal (EM) fungi play a vital role in ensuring plant health, plant diversity, and ecosystem function. However, the study on fungal diversity and community assembly of EM fungi associated with herbaceous plants remains poorly understood. Thus, in our study, Carex pediformis and Polygonum divaricatum in the subalpine meadow of central Inner Mongolia, China were selected for exploring EM fungal diversity and community assembly mechanisms by using llumina MiSeq sequencing of the fungal internal transcribed spacer 2 region (ITS2). We evaluated the impact of soil, climatic, and spatial variables on EM fungal diversity and community turnover. Deterministic vs. stochastic processes for EM fungal community assembly were quantified using ß-Nearest taxon index scores. The results showed that a total of 70 EM fungal OTUs belonging to 21 lineages were identified, of which Tomentella-Thelephora, Helotiales1, Tricholoma, Inocybe, Wilcoxina were the most dominant EM fungal lineages. EM fungal communities were significantly different between the two herbaceous plants and among the two sampling sites, and this difference was mainly influenced by soil organic matter (OM) content and mean annual precipitation (MAP). The neutral community model (NCM) explained 45.7% of the variations in EM fungi community assembly. A total of 99.27% of the ß-Nearest Taxa Index (ßNTI) value was between -2 and 2. These results suggest that the dominant role of stochastic processes in shaping EM fungal community assembly. In addition, RCbray values showed that ecological drift in stochastic processes dominantly determined community assembly of EM fungi. Overall, our study shed light on the EM fungal diversity and community assembly associated with herbaceous plants in the subalpine region of central Inner Mongolia for the first time, which provided a better understanding of the role of herbaceous EM fungi.


Assuntos
Basidiomycota , Micobioma , Micorrizas , Micorrizas/genética , Ecossistema , Plantas , Solo
4.
Environ Pollut ; 330: 121728, 2023 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-37116566

RESUMO

Tropospheric ozone (O3) pollution has long been a prominent environmental threat due to its adverse impacts on vulnerable populations and ecosystems. In recent years, an unexpected increase in O3 levels over the South Coast Air Basin (SoCAB) of California has been observed despite reduced precursor emissions and the driving factors behind this abnormal condition remain unclear. In this work, we combine ambient measurements, satellite data, and air quality modeling to investigate O3 and precursor emission trends and explore the impacts of meteorological variability and emission changes on O3 over the SoCAB from 2012 to 2020. Changes in O3 trends were characterized by declining O3 in 2012-2015, and increasing O3 afterwards with the most extreme O3 exceedances in 2020. Basin-wide increases of MDA8 O3 concentrations over warm season were depicted between 2012 and 2020, with the most significant enhancements (5-10 ppb) observed in San Bernardino County. Persistent heatwaves and weak ventilation on consecutive days were closely correlated with O3 exceedances (r2 above 0.6) over inland SoCAB. While decreasing trends in NOx (-4.1%/yr) and VOC emissions (-1.8%/yr) inferred from emission inventory and satellites during 2012-2020 resulted in a slow transition for O3 sensitivity from VOCs-limited to NOx-limited, model simulations performed with fixed meteorology indicate that unfavorable meteorological conditions could largely offset regulation benefits, with meteorology anomaly-induced monthly O3 changes reaching 20 ppb (May 2020) and the deterioration of O3 pollution in 2016, 2017, and 2020 was largely attributed to unfavorable meteorological conditions. Nevertheless, anthropogenic emission changes may act as the dominant factor in governing O3 variations across the SoCAB when net effects of meteorology are neutral (typically 2018). This work provides a comprehensive assessment of O3 pollution and contributes valuable insights into understanding the long-term changes of O3 and precursors in guiding future regulation efforts in the SoCAB.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Ozônio , Poluentes Atmosféricos/análise , Ecossistema , Meteorologia , Poluição do Ar/análise , Ozônio/análise , California , Monitoramento Ambiental/métodos
5.
Nat Commun ; 14(1): 1569, 2023 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-36944651

RESUMO

Ensuring a more equitable distribution of vaccines worldwide is an effective strategy to control global pandemics and support economic recovery. We analyze the socioeconomic effects - defined as health gains, lockdown-easing effect, and supply-chain rebuilding benefit - of a set of idealized COVID-19 vaccine distribution scenarios. We find that an equitable vaccine distribution across the world would increase global economic benefits by 11.7% ($950 billion per year), compared to a scenario focusing on vaccinating the entire population within vaccine-producing countries first and then distributing vaccines to non-vaccine-producing countries. With limited doses among low-income countries, prioritizing the elderly who are at high risk of dying, together with the key front-line workforce who are at high risk of exposure is projected to be economically beneficial (e.g., 0.9%~3.4% annual GDP in India). Our results reveal how equitable distributions would cascade more protection of vaccines to people and ways to improve vaccine equity and accessibility globally through international collaboration.


Assuntos
COVID-19 , Vacinas , Humanos , Idoso , Vacinas contra COVID-19 , Saúde Global , COVID-19/epidemiologia , COVID-19/prevenção & controle , Controle de Doenças Transmissíveis
6.
Nat Commun ; 13(1): 5738, 2022 09 30.
Artigo em Inglês | MEDLINE | ID: mdl-36180421

RESUMO

Air quality associated public health co-benefit may emerge from climate and energy policies aimed at reducing greenhouse gas (GHG) emissions. However, the distribution of these co-benefits has not been carefully studied, despite the opportunity to tailor mitigation efforts so they achieve maximum benefits within socially and economically disadvantaged communities (DACs). Here, we quantify such health co-benefits from different long-term, low-carbon scenarios in California and their distribution in the context of social vulnerability. The magnitude and distribution of health benefits, including within impacted communities, is found to varies among scenarios which reduce economy wide GHG emissions by 80% in 2050 depending on the technology- and fuel-switching decisions in individual end-use sectors. The building electrification focused decarbonization strategy achieves ~15% greater total health benefits than the truck electrification focused strategy which uses renewable fuels to meet building demands. Conversely, the enhanced electrification of the truck sector is shown to benefit DACs more effectively. Such tradeoffs highlight the importance of considering environmental justice implications in the development of climate mitigation planning.


Assuntos
Poluição do Ar , Gases de Efeito Estufa , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , California , Carbono
7.
Environ Sci Technol ; 55(18): 12223-12232, 2021 09 21.
Artigo em Inglês | MEDLINE | ID: mdl-34506112

RESUMO

The Clean Air Act requires the United States Environmental Protection Agency to review routinely the National Ambient Air Quality Standards, including fine particulate matter (PM2.5). A non-governmental Independent Particulate Matter Review Panel recently concluded that the current PM2.5 standards do not protect public health adequately and recommended revising the daily standard from 35 to 25-30 µg/m3 and the annual standard from 12 to 8-10 µg/m3. To assess the public health implications of adopting the PM2.5 standards proposed by the panel, the health benefits are quantified from their implementation based on both current (observed) and future (simulated) air quality data for California. The findings indicate that strengthening the standards would provide significant public health benefits valued at $42-$149 billion. Additionally, the stronger standards are shown to benefit environmental justice via health savings that are allocated more within environmentally and socioeconomically disadvantaged communities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , California , Exposição Ambiental , Material Particulado/análise , Estados Unidos , United States Environmental Protection Agency
8.
J Air Waste Manag Assoc ; 71(11): 1428-1444, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34287106

RESUMO

The use of low-NOx compressed natural gas (CNG) medium-duty vehicles (MDVs) and heavy-duty vehicles (HDVs) has the potential to significantly reduce NOx emissions and yield improvements in regional air quality. However, the extent of air quality improvement depends on many factors including future levels of vehicle deployment, the evolution of emissions from other sources, and meteorology. An analysis of the impacts requires modeling the atmosphere to account for both primary and secondary air pollutants, and the use of health impact assessment tools to map air quality changes into quantifiable metrics of human health. Here, we quantify and compare the air quality and health impacts associated with the deployment of low-NOx CNG engines to power future MDV and HDV fleets in California relative to both a business-as-usual and a more advanced fleet composition. The results project that reductions in summer ground-level ozone could reach 13 ppb when compared to a baseline fleet of diesel and gasoline HDV and MDV and could reach 6 ppb when compared to a cleaner fleet that includes some zero-emission vehicles and fuels. Similarly, for all CNG cases considered reductions in PM2.5 are predicted to range from 1.2 ug/m3 to 2.7 ug/m3 for a summer episode and from 3.1 ug/m3 to approximately 7.8 ug/m3 for a winter episode. These improvements yield short-term health benefits equivalent to $47 to $56 million in summer and $38 to $43 million in winter during episodes conducive to poor air quality. Additionally, the use of zero emission vehicle options such as battery electric and hydrogen fuel cell trucks could achieve approximately 25% to 31% higher benefits for an equivalent fleet penetration level due to the additional emission reductions achieved.Implications: The paper provides a quantitative estimate of the air quality and human health benefits that can be achieved through the use of novel compressed natural gas engines (i.e., low-NOx CNG) in medium- and heavy-duty vehicles and provide a comparison with zero emission vehicles. Thus, our findings will provide support for policy development seeking to transform the trucking sector to meet clean air and climate goals given the current struggle policymakers have with selecting between alternative truck technologies due to variance in factors like cost and technical maturity.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , Monitoramento Ambiental , Gasolina/análise , Humanos , Veículos Automotores , Gás Natural/análise , Emissões de Veículos/análise
9.
Environ Sci Technol ; 55(1): 547-552, 2021 01 05.
Artigo em Inglês | MEDLINE | ID: mdl-33296187

RESUMO

Historically, California has been a world leader in the development and application of environmental regulations. Policies to address air pollution have reduced criteria pollutant emissions, improved regional air quality, and benefited public health. To this end, California has imposed strict regulations on light-duty, medium-duty, and heavy-duty vehicles to reduce ambient concentrations of health-damaging pollutants such as ozone and fine particulate matter (PM2.5). Here, we compare the impact on air quality in California should California not have adopted on-road vehicle regulations (No Regulations Case) with the air quality associated with current regulations (Regulated Case). Simulations of atmospheric chemistry and transport are conducted to evaluate the impact of emissions on ambient levels of ozone and PM2.5, and a health impact assessment tool is used to quantify and monetize societal impairment. Compared with the "Regulated Case," the "No Regulations Case" results in a maximum peak 8 h ozone level of 162 ppb and 24 h PM2.5 of 42.7 µg/m3 in summer, and 107 µg/m3 and 24 h PM2.5 in winter. The associated increases in the daily incidence of human health outcomes are $66 million per day and $116 million per day during peak pollutant formation periods in summer and winter, respectively. Overall, the findings quantitatively establish the role and importance of on-road vehicle regulations in protecting societal well-being.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Poluição do Ar/prevenção & controle , California , Monitoramento Ambiental , Humanos , Material Particulado/análise , Emissões de Veículos/análise
10.
Environ Int ; 125: 386-398, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30743145

RESUMO

In this study we analyze the impact of major drivers of future air quality, both separately and simultaneously, for the year 2035 in three major California air basins: the South Coast Air Basin (SoCAB), the San Francisco Bay Area (SFBA), and the San Joaquin Valley (SJV). A variety of scenarios are considered based on changes in climate-driven meteorological conditions and both biogenic and anthropogenic emissions. Anthropogenic emissions are based on (1) the California Air Resources Board (CARB) California Emissions Projection Analysis Model (CEPAM), (2) increases in electric sector emissions due to climate change, and (3) aggressive adoption of alternative energy technologies electrification of end-use technologies, and energy efficiency measures. Results indicate that climate-driven changes in meteorological conditions will significantly alter day-to-day variations in future ozone and PM2.5 concentrations, likely increasing the frequency and severity of pollution periods in regions that already experience poor air quality and increasing health risks from pollutant exposure. Increases in biogenic and anthropogenic emissions due to climate change are important during the summer seasons, but have little effect on pollutant concentrations during the winter. Results also indicate that controlling anthropogenic emissions will play a critical role in mitigating climate-driven increases in both ozone and PM2.5 concentrations in the most populated areas of California. In the absence of anthropogenic emissions controls, climate change will worsen ozone air quality throughout the state, increasing exceedances of ambient air quality standards. If planned reductions in anthropogenic emissions are implemented, ozone air quality throughout the less urban areas of the state may be improved in the year 2035, but regions such as the SoCAB and the east SFBA will likely continue to experience high ozone concentrations throughout the summer season. Climate change and anthropogenic emissions controls are both found to decrease wintertime PM2.5 concentrations in the SJV, eliminating nearly all exceedances of PM2.5 National Ambient Air Quality Standards (NAAQS) in the year 2035. However, reductions in anthropogenic emissions are unable to fully mitigate the impact of climate change on PM2.5 concentrations in the SoCAB and east SFBA. Thus, while future air quality in the SJV is projected to be improved in the year 2035, air quality in the SoCAB and east SFBA will remain similar or marginally worsen compared to present day levels. Conversely, we find that aggressive adoption of alternative energy technologies including renewable resources, electrification of end-use technologies, and energy efficiency measures can offset the impacts of climate change. Overall, the two main drivers for air quality in 2035 are changes in meteorological conditions due to climate change and reductions in anthropogenic emissions.


Assuntos
Poluição do Ar/análise , Mudança Climática , Modelos Teóricos , California , Previsões , Humanos
12.
Faraday Discuss ; 189: 547-66, 2016 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-27108651

RESUMO

Air quality models are used to simulate and forecast pollutant concentrations, from continental scales to regional and urban scales. These models usually assume that particles are internally mixed, i.e. particles of the same size have the same chemical composition, which may vary in space and time. Although this assumption may be realistic for continental-scale simulations, where particles originating from different sources have undergone sufficient mixing to achieve a common chemical composition for a given model grid cell and time, it may not be valid for urban-scale simulations, where particles from different sources interact on shorter time scales. To investigate the role of the mixing state assumption on the formation of particles, a size-composition resolved aerosol model (SCRAM) was developed and coupled to the Polyphemus air quality platform. Two simulations, one with the internal mixing hypothesis and another with the external mixing hypothesis, have been carried out for the period 15 January to 11 February 2010, when the MEGAPOLI winter field measurement campaign took place in Paris. The simulated bulk concentrations of chemical species and the concentrations of individual particle classes are compared with the observations of Healy et al. (Atmos. Chem. Phys., 2013, 13, 9479-9496) for the same period. The single particle diversity and the mixing-state index are computed based on the approach developed by Riemer et al. (Atmos. Chem. Phys., 2013, 13, 11423-11439), and they are compared to the measurement-based analyses of Healy et al. (Atmos. Chem. Phys., 2014, 14, 6289-6299). The average value of the single particle diversity, which represents the average number of species within each particle, is consistent between simulation and measurement (2.91 and 2.79 respectively). Furthermore, the average value of the mixing-state index is also well represented in the simulation (69% against 59% from the measurements). The spatial distribution of the mixing-state index shows that the particles are not mixed in urban areas, while they are well mixed in rural areas. This indicates that the assumption of internal mixing traditionally used in transport chemistry models is well suited to rural areas, but this assumption is less realistic for urban areas close to emission sources.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA