Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 131
Filtrar
1.
Tissue Cell ; 89: 102453, 2024 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-38964085

RESUMO

AIMS: Baicalin is a flavonoid derived from the root of the medicinal plant Scutellaria baicalensis Georgi (S. baicalensis) and is known for its various pharmacological properties. This study aimed to investigate the impact of baicalin (BAI) on the occurrence of kidney calcium oxalate crystal formation induced by ethylene glycol in male SD rats. MAIN METHODS: A rat model of renal stones was created and various concentrations of baicalin were used for intervention. Samples of urine, blood, and kidney tissue were taken from the rats, and they were euthanized for biochemical and histopathological examinations. KEY FINDINGS: Our results show that baicalin treatment improved the weight loss induced by ethylene glycol (EG) and ammonium chloride (AC) in rats. Baicalin also reduced the formation of calcium oxalate crystals and protected kidney function in rats with urolithiasis. Furthermore, it lowered the level of malondialdehyde (MDA) and elevated the activity of antioxidant enzymes compared to the stone control group. Additionally, baicalin notably alleviated renal inflammation in rats with urolithiasis. SIGNIFICANCE: The present study attributed clinical evidence first time that claiming the significant antiurolithic effect of baicalin and could be a cost-effective candidate for the prevention and treatment of urolithiasis.

2.
Int J Biol Macromol ; 275(Pt 1): 133676, 2024 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-38971134

RESUMO

Stimuli-responsive antioxidant Pickering emulsions play crucial role in many industrial areas. This study demonstrated for the first time oil-in-water Pickering emulsions with outstanding antioxidation and responsive demulsification stabilized by functionalized cellulose nanocrystals (CNCs). Dialdehyde cellulose nanocrystals (DACs) were first prepared through the oxidation of CNCs with periodate, followed by the grafting of p-aminophenols (PAPs) onto their surfaces through Schiff base reaction, affording PAP grafted DACs (DAC-g-PAP) via dynamic covalent linkage. The degree of the oxidation (DO) of DACs had a significant effect on the yield of the targeting DAC-g-PAP nanoparticles. High DO (≥40 %) potentially led to the degradation of DACs during the grafting of PAP. The introduced PAP endowed DACs with excellent radical scavenging capability, thereby providing antioxidant properties while improving the hydrophobicity. DAC-g-PAP nanoparticles were then applied as Pickering emulsifiers to prepare oil-in-water Pickering emulsions. The resultant Pickering emulsions indicated exceptional antioxidant and pH-responsiveness together with good freezing-thaw stability. The structures of DAC-g-PAP nanoparticles were thoroughly characterized in this study.

3.
Genes (Basel) ; 15(6)2024 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-38927726

RESUMO

This study analyzed ancient DNA from the remains of horses unearthed from the Shihuyao tombs. These were found to date from the Han and Tang Dynasties in Xinjiang (approximately 2200 to 1100 years ago). Two high-quality mitochondrial genomes were acquired and analyzed using next-generation sequencing. The genomes were split into two maternal haplogroups, B and D, according to a study that included ancient and contemporary samples from Eurasia. A close genetic affinity was observed between the horse of the Tang Dynasty and Akhal-Teke horses according to the primitive horse haplotype G1. Historical evidence suggests that the ancient Silk Road had a vital role in their dissemination. Additionally, the matrilineal history of the Akhal-Teke horse was accessed and suggested that the early domestication of the breed was for military purposes.


Assuntos
DNA Antigo , Genoma Mitocondrial , Haplótipos , Animais , Cavalos/genética , Genoma Mitocondrial/genética , China , DNA Antigo/análise , DNA Mitocondrial/genética , Filogenia , História Antiga , Sequenciamento de Nucleotídeos em Larga Escala , Domesticação
4.
Carbohydr Res ; : 109177, 2024 Jun 06.
Artigo em Inglês | MEDLINE | ID: mdl-38880715

RESUMO

Chitin oligosaccharides have garnered significant attention due to their biological activities, particularly their immunomodulatory properties. However, O-acetylation in chemically preparing chitin oligosaccharides seems inevitable and leads to some uncertainty on the bioactivity of chitin oligosaccharides. In this study, an O-acetyl-free chitin oligosaccharides and three different O-acetylated chitin oligosaccharides with degree of polymerization ranging from 2 to 6 were prepared using ammonia hydrolysis, and their structures and detailed components were further characterized with FTIR, NMR and MS. Subsequently, the effects of O-acetylation on the immunomodulatory activity of chitin oligosaccharides were investigated in vitro and in vivo. The results suggested that the chitin oligosaccharides with O-acetylation exhibited better inflammatory inhibition than pure chitin oligosaccharides, significantly reducing the expression of inflammatory factors, such as IL-6 and iNOS, in the LPS-induced RAW264.7 macrophage. The chitin oligosaccharides with a degree of O-acetylation of 93 % was found to effectively alleviate LPS-induced endotoxemia in mice, including serum inflammation indices reduction and damage repairment of the intestinal liver, and kidney tissues.

5.
Opt Express ; 32(12): 20852-20861, 2024 Jun 03.
Artigo em Inglês | MEDLINE | ID: mdl-38859455

RESUMO

We report on a high-power and narrow-linewidth nanosecond pulsed intracavity crystalline Raman laser at 1.7 µm. Driven by an acousto-optically Q-switched 1314 nm two-crystal Nd:YLF laser, the highly efficient cascaded YVO4 Raman laser at 1715nm was obtained within the well-designed L-shaped resonator. Thanks to the absence of spatial hole burning in the stimulated Raman scattering process, significant spectral purification of second-Stokes radiation was observed by incorporating a fused silica etalon in the high-Q fundamental cavity. Under the repetition rate of 4 kHz, the highest average output power for single longitudinal mode operation was up to 2.2 W with the aid of precision vibration isolation and precision temperature controlling, corresponding to the pulse duration of ∼2.8 ns and the spectral linewidth of ∼330 MHz. Further increasing the launched pump power, the second-Stokes laser tended toward be always multimode, and the maximum average output power amounted to 4.8 W with the peak power of ∼0.8 MW and the spectral linewidth of ∼0.08 nm. The second-Stokes emission was near diffraction limited with M2 < 1.4 across the whole pump power range.

6.
Sci Total Environ ; 934: 173081, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38754514

RESUMO

Fluoride is unnecessary in the human body. Long-term fluoride exposure may lead to immune system abnormalities. However, the mechanism remains unclear. This study aim to explore the mechanism of fluoride interference in the immune system and also identify the key indicators of fluoride-induced immune damage. Questionnaires were used to collect basic information. Multiple linear analyses and other statistical methods were used in order to process the data. Flow cytometry was used to detect relevant immunomarkers and analyze immune damage. Simultaneously, Wistar rats and cell models exposed to fluoride were established to detect the effects of fluoride on immune homeostasis. The results showed that sex, residence time, smoking, and Corona Virus Disease 2019 (COVID-19) infection may indirectly influence fluoride-induced immune damage. In residents of fluoride-exposed areas, there was a significant decrease in CD3+ T lymphocytes and CD4+ and CD8+ cells and a downward trend in the CD4+/CD8+ cell ratio. CD4+CD8+/CD4+, regulatory T cells (Tregs), and Tregs/effector T cells (Teffs) ratios showed opposite changes. Fluoride inhibits T cell activation by inhibiting the expression and phosphorylation of Protein Kinase C-θ (PKC-θ), hinders the internalization of T cell receptors, and affects NF-kB and c-Jun protein expression, leading to homeostatic Treg/Teff imbalance in vivo and in vitro experiments. This study represents the first evidence suggesting that PKC-θ may be the key to immune imbalance in the body under fluoride exposure. It is possible that Tregs/Teffs cell ratio provide a reference point for the diagnosis and treatment of fluoride-induced immune damage.


Assuntos
Fluoretos , Proteína Quinase C-theta , Ratos Wistar , Linfócitos T Reguladores , Fluoretos/toxicidade , Animais , Ratos , Linfócitos T Reguladores/imunologia , Linfócitos T Reguladores/efeitos dos fármacos , Masculino , Humanos , Feminino , COVID-19
7.
J Med Biochem ; 43(2): 226-233, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38699692

RESUMO

Background: To observe the basic metabolic characteristics of obese patients with polycystic ovarian syndrome (PCOS), and observe and compare the effect of laparoscopic sleeve gastrectomy and metformin treatment after 3 months. Methods: In January to December 2018, the Second Hospital of Hebei Medical University selected 104 women who were classified as obese with a body mass index (BMI) of 28 kg/cm2 or higher and had PCOS. They were divided into obese PCOS group (53 cases) and obese non-PCOS group (51 cases). Results: 1. There was no significant difference in waist circumference and WHR between patients who are obese with PCOS and patients who are obese without PCOS (P > 0.05). Obese PCOS patients were significantly higher in anti-Müllerian hormone (AMH), LH/FSH, T, FAI, homa-ir, triglyceride (TG), low density lipoprotein (LDL), Apo-B and uric acid than the group of non-PCOS patients who were obese. (P<0.05). The SHBG levels of obese patients with PCOS were obviously lower when contrasted with the levels in obese patients without PCOS (P < 0.05). 2. Body weight, BMI, INS, homa-ir and TG of obese PCOS patients were significantly decreased 3 months after laparoscopic sleeve gastrectomy compared with that before surgery (P < 0.05). After three months of medical treatment with metformin, the patients' homeostatic model assessment of insulin resistance (HOMA-IR) was obviously reduced when contrasted with the pre-treatment HOMA-IR levels (P < 0.05), and there was no significant difference in the improvement degree of homa-ir between the two groups (P > 0.05). Conclusions: 1. Obese patients with PCOS demonstrated higher expression of AMH, LH/FSH, T, SHBG, and FAI when contrasted with the control group. Additionally, they experienced more severe insulin resistance and lipid metabolism disorders. 2. The weight and BMI of obese PCOS patients were significantly decreased after weight loss, while IR and blood lipid were significantly improved, while IR was improved in metformin group, and no significant discrepancy was observed in the degree of improvement of insulin resistance between both groups.

8.
Front Immunol ; 15: 1394161, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38807586

RESUMO

Excessive fluoride intake from residential environments may affect multiple tissues and organs; however, the specific pathogenic mechanisms are unclear. Researchers have recently focused on the damaging effects of fluoride on the immune system. Damage to immune function seriously affects the quality of life of fluoride-exposed populations and increases the incidence of infections and malignant tumors. Probing the mechanism of damage to immune function caused by fluoride helps identify effective drugs and methods to prevent and treat fluorosis and improve people's living standards in fluorosis-affected areas. Here, the recent literature on the effects of fluoride on the immune system is reviewed, and research on fluoride damage to the immune system is summarized in terms of three perspectives: immune organs, immune cells, and immune-active substances. We reviewed that excessive fluoride can damage immune organs, lead to immune cells dysfunction and interfere with the expression of immune-active substances. This review aimed to provide a potential direction for future fluorosis research from the perspective of fluoride-induced immune function impairment. In order to seek the key regulatory indicators of fluoride on immune homeostasis in the future.


Assuntos
Fluoretos , Sistema Imunitário , Humanos , Fluoretos/efeitos adversos , Animais , Sistema Imunitário/efeitos dos fármacos , Sistema Imunitário/imunologia , Sistema Imunitário/metabolismo , Fluorose Dentária/imunologia , Fluorose Dentária/etiologia , Exposição Ambiental/efeitos adversos
10.
J Hazard Mater ; 469: 133943, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38452676

RESUMO

Antibiotic resistance is one of the most concerned global health issues. However, comprehensive profiles of antibiotic resistance genes (ARGs) in various environmental settings are still needed to address modern antibiotic resistome. Here, Arctic soils and representative contaminated samples from ARG pollution sources were analyzed using metagenomic approaches. The diversity and abundance of ARGs in Arctic soils were significantly lower than those in contaminated samples (p < 0.01). ARG profiles in Arctic soils were featured with the dominance of vanF, ceoB, and bacA related to multidrug and bacitracin, whereas those from ARG pollution sources were characterized by prevalent resistance to anthropogenic antibiotics such as sulfonamides, tetracyclines, and beta-lactams. Mobile genetic elements (MGEs) were found in all samples, and their abundance and relatedness to ARGs were both lower in Arctic soils than in polluted samples. Significant relationships between bacterial communities and ARGs were observed (p < 0.01). Cultural bacteria in Arctic soils had clinically-concerned resistance to erythromycin, vancomycin, ampicillin, etc., but ARGs relevant to those antibiotics were undetectable in their genomes. Our results suggested that Arctic environment could be an important reservoir of novel ARGs, and antibiotic stresses could cause ARG pollution via horizontal gene transfer and enrichment of resistant bacteria.


Assuntos
Antibacterianos , Genes Bacterianos , Antibacterianos/farmacologia , Solo , Bactérias/genética , Ampicilina
11.
Front Biosci (Landmark Ed) ; 29(3): 92, 2024 Mar 06.
Artigo em Inglês | MEDLINE | ID: mdl-38538272

RESUMO

Phosphoglycerate kinase 1 (PGK1) serves as a pivotal enzyme in the cellular glycolysis pathway, facilitating adenosine-triphosphate (ATP) production in tumor cells and driving the Warburg effect. PGK1 generates ATP through the reversible phosphorylation reaction of 1,3-bisphosphoglycerate (1,3-BPG) to Mg-adenosine-5'-diphosphate (Mg-ADP). In addition to its role in regulating cellular metabolism, PGK1 plays a pivotal role in autophagy induction, regulation of the tricarboxylic acid cycle (TCA), and various mechanisms including tumor cell drug resistance, and so on. Given its multifaceted functions within cells, the involvement of PGK1 in many types of cancer, including breast cancer, astrocytoma, metastatic colon cancer, and pancreatic ductal adenocarcinoma, is intricate. Notably, PGK1 can function as an intracellular protein kinase to coordinate tumor growth, migration, and invasion via posttranslational modifications (PTMs). Furthermore, elevated expression levels of PGK1 have been observed in cancer tissues, indicating its association with unfavorable treatment outcomes and prognosis. This review provides a comprehensive summary of PGK1's expression pattern, structural features, functional properties, involvement in PTMs, and interaction with tumors. Additionally highlighted are the prospects for developing and applying related inhibitors that confirm the indispensable value of PGK1 in tumor progression.


Assuntos
Neoplasias do Colo , Fosfoglicerato Quinase , Humanos , Adenosina/metabolismo , Trifosfato de Adenosina/metabolismo , Linhagem Celular Tumoral , Neoplasias do Colo/tratamento farmacológico , Fosfoglicerato Quinase/genética , Fosfoglicerato Quinase/metabolismo , Fosforilação
12.
J Hepatol ; 80(2): 293-308, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38450598

RESUMO

BACKGROUND & AIMS: The role of solute carrier family 25 member 15 (SLC25A15), a critical component of the urea cycle, in hepatocellular carcinoma (HCC) progression remains poorly understood. This study investigated the impact of SLC25A15 on HCC progression and its mechanisms. METHODS: We systematically investigated the function of SLC25A15 in HCC progression using large-scale data mining and cell, animal, and organoid models. Furthermore, we analyzed its involvement in reprogramming glutamine metabolism. RESULTS: SLC25A15 expression was significantly decreased in HCC tissues, and patients with low SLC25A15 levels had a poorer prognosis. Hypoxia-exposed HCC cells or tissues had lower SLC25A15 expression. A positive correlation between HNF4A, a transcription factor suppressed by hypoxia, and SLC25A15 was observed in both HCC tissues and cells. Modulating HNF4A levels altered SLC25A15 mRNA levels. SLC25A15 upregulated SLC1A5, increasing glutamine uptake. The reactive metabolic pathway of glutamine was increased in SLC25A15-deficient HCC cells, providing energy for HCC progression through additional lipid synthesis. Ammonia accumulation due to low SLC25A15 levels suppressed the expression of OGDHL (oxoglutarate dehydrogenase L), a switch gene that mediates SLC25A15 deficiency-induced reprogramming of glutamine metabolism. SLC25A15-deficient HCC cells were more susceptible to glutamine deprivation and glutaminase inhibitors. Intervening in glutamine metabolism increased SLC25A15-deficient HCC cells' response to anti-PD-L1 treatment. CONCLUSION: SLC25A15 is hypoxia-responsive in HCC, and low SLC25A15 levels result in glutamine reprogramming through SLC1A5 and OGDHL regulation, promoting HCC progression and regulating cell sensitivity to anti-PD-L1. Interrupting the glutamine-derived energy supply is a potential therapeutic strategy for treating SLC25A15-deficient HCC. IMPACT AND IMPLICATIONS: We first demonstrated the tumor suppressor role of solute carrier family 25 member 15 (SLC25A15) in hepatocellular carcinoma (HCC) and showed that its deficiency leads to reprogramming of glutamine metabolism to promote HCC development. SLC25A15 can serve as a potential biomarker to guide the development of precision therapeutic strategies aimed at targeting glutamine deprivation. Furthermore, we highlight that the use of an inhibitor of glutamine utilization can enhance the sensitivity of low SLC25A15 HCC to anti-PD-L1 therapy.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Humanos , Carcinoma Hepatocelular/genética , Glutamina , Neoplasias Hepáticas/genética , Hipóxia/genética , Transporte Biológico , Antígenos de Histocompatibilidade Menor , Sistema ASC de Transporte de Aminoácidos/genética
13.
Front Neurol ; 15: 1355895, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38533417

RESUMO

Background: Telomere length is closely linked to the aging phenotype, where cellular aging results in the production of a cascade of cell factors and the senescence-associated secretory phenotype (SASP), leading to an inflammatory response. The presence of inflammation plays a crucial role in the formation of intracranial aneurysms. Nevertheless, the relationship between telomere length and intracranial aneurysms remains unclear. This study aims to explore the causal connection between telomere length and intracranial aneurysms through the utilization of Mendelian randomization (MR) analysis. Methods: Data on telomere length were obtained from the genome-wide association studies conducted on the UK Biobank, comprising a total of 472,174 participants. Data on intracranial aneurysms were obtained from the summary dataset of the Global Genome-wide Association Study (GWAS) conducted by the International Stroke Genetics Consortium. The dataset consisted of 7,495 cases and 71,934 controls, all of European descent. Initially, the linkage disequilibrium score was used to investigate the connection between telomere length and intracranial aneurysms. Subsequently, a bidirectional MR was conducted using two-sample analysis to assess whether there is a causal connection between telomere length and intracranial aneurysm risk. The results were analyzed utilizing five MR methods, with the inverse variance weighted method serving as the main methodology. In addition, we did various analyses to evaluate the presence of heterogeneity, pleiotropy, and sensitivity in the study results. A reverse MR analysis was conducted to investigate potential reverse causal links. Results: In the forward MR analysis, it was observed that both the inverse variance-weighted and weighted median analyses implied a potential causal relationship between longer telomere length and a decreased incidence of intracranial aneurysms (IVW: OR = 0.66, 95% CI: 0.47-0.92, p = 1.49 × 10-2). There was no heterogeneity or horizontal pleiotropy. The findings were verified to be robust through the utilization of leave-one-out analysis. The use of reverse MR analysis did not establish a potential causal link between the occurrence of intracranial aneurysms and telomere length. Conclusion: There may exist a potential correlation between longer telomere length and a decreased likelihood of intracranial aneurysms within the European population. The present study offers novel insights into the correlation between telomere length and intracranial aneurysms. Additional research is required to clarify the underlying mechanisms and validate our discoveries in diverse populations.

14.
Opt Express ; 32(3): 4180-4188, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38297624

RESUMO

We demonstrate the first ten-watt-level eye-safe intracavity crystalline Raman laser, to the best of our knowledge. The efficient high-power eye-safe Raman laser is intracavity-pumped by an acousto-optically Q-switched 1314 nm two-crystal Nd:YLF laser. Benefiting from the unique bi-axial properties of KGW crystal, two sets of eye-safe dual-wavelength Raman lasers operating at 1461, 1645 nm and 1490, 1721nm are achieved by rotating the Raman crystal. Under the launched pump power of 84.9 W and the repetition rate of 4 kHz, the maximum first-Stokes output powers of 7.9 W at 1461 nm and 8.2 W at 1490 nm are acquired with the second-Stokes output powers of 1.4 W at 1645 nm and 1.5 W at 1721nm, respectively, leading to the eye-safe dual-wavelength Raman output powers of up to 9.3 and 9.7 W. Meanwhile, the pulse durations at the wavelengths of 1461, 1490, 1645, 1721nm are determined to be 4.8, 5.5, 4.3, and 3.6 ns, respectively, which give rise to the peak powers approaching about 410, 370, 80, 100 kW. These Stokes emissions are found to be near diffraction limited with M2 < 1.6 across the entire output power range.

15.
Opt Lett ; 49(4): 1009-1012, 2024 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-38359229

RESUMO

A highly powerful nanosecond pulsed deep-red laser was demonstrated by intracavity second-harmonic generation of an actively Q-switched Nd:YLF dual-crystal-based KGW Raman laser in a critically phase-matched lithium triborate (LBO) crystal. The first-Stokes fields at 1461 and 1490 nm driven by the 1314 nm fundamental laser were firstly produced by accessing the Raman shifts of 768 and 901 cm-1 in the KGW crystal, respectively, and thereafter converted to the deep-red emission lines at 731 and 745 nm by finely tuning the phase-matching angle of the LBO crystal and carefully realigning the resonator. Integrating the benefits of the Nd:YLF dual-crystal configuration and the meticulously designed L-shaped resonator, this deep-red laser system delivered the maximum average output powers of 5.2 and 7.6 W with the optical power conversion efficiencies approaching 6.3% and 9.2% under the optimal pulse repetition frequency of 4 kHz, respectively. The pulse durations of 6.7 and 5.5 ns were acquired with the peak powers up to approximately 190 and 350 kW, respectively, and the resultant beam qualities were determined to be near-diffraction-limited with M2 ≈ 1.5.

16.
Medicine (Baltimore) ; 103(3): e36392, 2024 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-38241540

RESUMO

We aimed to determine prognostic indicators of PE patients with hemodynamic decompensation admitted to the ICU. PE patients with hemodynamic decompensation at ICU admission from Medical Information Mart for Intensive Care IV database were included. Least absolute shrinkage and selection operator with 2 specific lambdas were performed to reduce the dimension of variables after univariate analysis. Then we conducted multivariate logistic regression analysis and 2 models were built. A total of 548 patients were included, among whom 187 died. Lactate, creatine-kinase MB, troponin-T were significantly higher in death group. Eight common factors were screened out from first model statistically mostly in consistent with second model: older age, decreased hemoglobin, elevated anion gap, elevated International Standard Ratio (INR), elevated respiratory rate, decreased temperature, decreased blood oxygen saturation (SpO2) and the onset of cardiac arrest were significantly risk factors for in-Hospital mortality. The nonlinear relationships between these indicators and mortality were showed by the restricted cubic spline and cutoff values were determined. Our study demonstrated that age, hemoglobin levels, anion gap levels, INR, respiratory rate, temperature, SpO2 levels, the onset of cardiac arrest could be applied to predict mortality of PE patients with hemodynamic decompensation at ICU admission.


Assuntos
Parada Cardíaca , Embolia Pulmonar , Humanos , Prognóstico , Estudos Retrospectivos , Unidades de Terapia Intensiva , Hemodinâmica , Embolia Pulmonar/diagnóstico , Hemoglobinas
17.
J Biophotonics ; 17(4): e202300449, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38176397

RESUMO

Gram staining can classify bacterial species into two large groups based on cell wall differences. Our study revealed that within the same gram group (gram-positive or gram-negative), subtle cell wall variations can alter staining outcomes, with the peptidoglycan layer and lipid content significantly influencing this effect. Thus, bacteria within the same group can also be differentiated by their spectra. Using hyperspectral microscopy, we identified six species of intestinal bacteria with 98.1% accuracy. Our study also demonstrated that selecting the right spectral band and background calibration can enhance the model's robustness and facilitate precise identification of varying sample batches. This method is suitable for analyzing bacterial community pathologies.


Assuntos
Bactérias , Microscopia , Coloração e Rotulagem , Peptidoglicano , Parede Celular
18.
Transl Oncol ; 41: 101870, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38262108

RESUMO

Low expression levels of breast cancer metastasis suppressor 1 like (BRMS1L) have been associated with the growth of cancer cells. However, the mechanisms underlying the role of BRMS1L as an antitumour transcription factor in the progression of NSCLC have not been explored. Herein, we reveal that BRMS1L plays a key role as a tumour suppressor in inhibiting NSCLC proliferation and metastasis. Mechanistically, BRMS1L overexpression results in the downregulation of glutathione peroxidase 2 (GPX2) expression and consequently causes abnormal glutathione metabolism and increased levels of reactive oxygen species (ROS) in cells, inducing oxidative stress injury and apoptosis. Furthermore, overexpression of GPX2 enhances the growth advantage and oxidative stress repair conferred by knockdown of BRMS1L. Importantly, we show that low expression of BRMS1L in NSCLC cells causes relatively high levels of antioxidant accumulation to maintain cell redox balance and renders cancer cells more sensitive to treatment with piperlongumine as an ROS inducer both in vitro and in vivo. These findings offer new insights into the role of BRMS1L as a transcriptional repressor in NSCLC and suggest that the BRMS1L expression level may be a potential biomarker for predicting the therapeutic response to small molecule ROS inducers, providing new ideas for targeted therapy.

19.
BJU Int ; 133(1): 34-43, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37696625

RESUMO

OBJECTIVE: To estimate the pooled prevalence, as well as the spatial and temporal distribution, of urolithiasis among subjects in China. MATERIALS AND METHODS: We conducted a comprehensive search of both Chinese and English databases to retrieve literature pertaining to the prevalence of urolithiasis in the indigenous Chinese population. A random-effects meta-analysis model was employed to calculate the pooled prevalence of urolithiasis. Subgroup analyses were conducted based on factors such as time, region, gender, and sample size. Prevalence and spatial distribution maps were created based on provinces and latitude/longitude coordinates. RESULTS: A total of 46 studies conducted in 22 provinces across China were included in this meta-analysis and the pooled prevalence of urolithiasis, kidney stones, ureteric calculi, urethral and bladder stones were 8.1% (95% confidence interval [CI] 5.6-11.1%), 7.8% (95% CI 5.8-10.0%), 3.2% (95% CI 0.6-5.7%), 0.5% (95% CI 0.1-0.9%). Most of the urolithiasis prevalence screening in China was concentrated between 100° E and 120° E, with higher rates observed in low latitude areas. Subgroup analysis of kidney stones revealed that Guangdong (12.7%) and Guangxi (10.3%) had the highest prevalence, with the eastern developed area exhibiting higher rates compared to the west. The prevalence in males was higher than in females (odds ratio 1.67, 95% CI 1.46-1.92), although the gender gap has significantly reduced since 2006. Moreover, a greater sample size is associated with a decreased prevalence of urolithiasis. CONCLUSIONS: The prevalence of urolithiasis is increasing in China, and there are noteworthy regional or provincial disparities in occurrence. It is worth noting that the current number of screening studies in some areas is insufficient. Additional investigations with appropriate sample sizes should be supplemented in time.


Assuntos
Cálculos Renais , Cálculos da Bexiga Urinária , Urolitíase , Masculino , Feminino , Humanos , Prevalência , China/epidemiologia , Urolitíase/epidemiologia , Cálculos Renais/epidemiologia
20.
Chemistry ; 30(4): e202302464, 2024 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-37909474

RESUMO

Bacterial colonization and biofilm formation on abiotic surfaces are initiated by the adhesion of peptides and proteins. Understanding the adhesion of such peptides and proteins at a molecular level thus represents an important step toward controlling and suppressing biofilm formation on technological and medical materials. This study investigates the molecular adhesion of a pilus-derived peptide that facilitates biofilm formation of Pseudomonas aeruginosa, a multidrug-resistant opportunistic pathogen frequently encountered in healthcare settings. Single-molecule force spectroscopy (SMFS) was performed on chemically etched ZnO 11 2 ‾ 0 ${\left(11\bar{2}0\right)}$ surfaces to gather insights about peptide adsorption force and its kinetics. Metal-free click chemistry for the fabrication of peptide-terminated SMFS cantilevers was performed on amine-terminated gold cantilevers and verified by X-ray photoelectron spectroscopy (XPS) and polarization-modulated infrared reflection absorption spectroscopy (PM-IRRAS). Atomic force microscopy (AFM) and XPS analyses reveal stable topographies and surface chemistries of the substrates that are not affected by SMFS. Rupture events described by the worm-like chain model (WLC) up to 600 pN were detected for the non-polar ZnO surfaces. The dissociation barrier energy at zero force ΔG(0), the transition state distance xb and bound-unbound dissociation rate at zero force koff (0) for the single crystalline substrate indicate that coordination and hydrogen bonds dominate the peptide/surface interaction.


Assuntos
Aderência Bacteriana , Óxido de Zinco , Pseudomonas aeruginosa , Peptídeos , Espectroscopia Fotoeletrônica , Microscopia de Força Atômica , Biofilmes , Propriedades de Superfície
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA