Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Fish Shellfish Immunol Rep ; 5: 100117, 2023 Dec 15.
Artigo em Inglês | MEDLINE | ID: mdl-37771817

RESUMO

Interleukin-11 (IL-11) is a versatile cytokine that modulates cellular differentiation and proliferation in various cell types and tissues. In this study, IL-11 gene from goldfish (Carassius auratus L.) has been identified and characterized. Goldfish IL-11 (gfIL-11) has an open reading frame (ORF) that spans 591 base pairs (bp). The ORF encodes a precursor protein consisting of 196 amino acids (aa), which includes a 26 aa signal peptide and a conserved domain belonging to the IL-11 superfamily. Based on phylogenetic analysis, gfIL-11 was found to be closely related to other IL-11 homologues identified in various fish species. The gfIL-11 transcript exhibited varied expression levels across all the analyzed tissues, with the highest expression observed in the gill and spleen. Treatment of goldfish head kidney leukocytes (HKLs) with LPS and live Aeromonas hydrophila, increased gfIL-11 mRNA expression level. Recombinant gfIL-11 protein (rgIL-11) induced a dose-dependent production of TNF-α and IFNγ from goldfish HKLs. Furthermore, the administration of rgIL-11 to goldfish HKLs triggered an increase in the expression of various transcription factors such as MafB, cJun, GATA2, and Egr1, which play a vital role in the differentiation of myeloid precursors into macrophages and monocytes. Our findings provide evidence that IL-11 is a crucial cytokine that promotes cell proliferation, immune response, and differentiation across various hematopoietic lineages and stages of goldfish.

2.
Fish Shellfish Immunol ; 137: 108789, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37149235

RESUMO

Goldfish (Carassius auratus) have been employed as a model organism to investigate the innate immune system and host-pathogen interactions. A Gram-negative bacterium called Aeromonas hydrophila has been found to cause mass mortality due to infection in a wide variety of fish species in the aquatic system. In this study, damages in Bowman's capsule, inflammatory tubular (proximal and distilled convoluted) structure, and glomerular necrosis were observed in A. hydrophila-infected head kidney of goldfish. To increase the better understanding of immune mechanisms of host defense against A. hydrophila, we performed a transcriptome analysis in head kidney of goldfish at 3 and 7 days of post-infection (dpi). Comparing to the control group, 4638 and 2580 differentially expressed genes (DEGs) were observed at 3 and 7 dpi, respectively. The DEGs were subsequently enriched in multiple immune-related pathways including Protein processing in endoplasmic reticulum, Insulin signaling pathway, and NOD-like receptor signaling pathway. The expression profile of immune-related genes such as TRAIL, CCL19, VDJ recombination-activating protein 1-like, Rag-1, and STING was validated by qRT-PCR. Furthermore, the levels of immune-related enzyme (LZM, AKP, SOD, and CAT) activities were examined at 3 and 7 dpi. The knowledge gained from the current study will be helpful for better understanding of early immune response in goldfish after A. hydrophila challenge, which will aid in future research on prevention strategies in teleost.


Assuntos
Doenças dos Peixes , Infecções por Bactérias Gram-Negativas , Animais , Carpa Dourada/genética , Aeromonas hydrophila/fisiologia , Perfilação da Expressão Gênica/veterinária , Imunidade Inata/genética , Transcriptoma
3.
Dev Comp Immunol ; 145: 104714, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37085019

RESUMO

The interleukin-6 family of cytokines possesses a diversity of roles with significant redundancy. The roles of these molecules have been relatively well characterized in mammals, with limited attention in other species. Progress has been made in the discovery of homologous molecules in fish. Here we report the characterization of pro-inflammatory properties of recombinant goldfish M17. Recombinant goldfish M17 enhanced phagocytosis, primed production of reactive oxygen intermediates, and was chemotactic to macrophages. Treatment of goldfish macrophages with LPS, heat-killed and live Aeromonas hydrophila resulted in higher M17 mRNA levels. Recombinant M17 (RgM17) induced dose-dependent production of IFNγ and IL-1ß1 in goldfish macrophages. Furthermore, treatment of macrophages with rgM17 resulted in upregulation of transcription factors that were important in the differentiation of myeloid progenitors into monocytes/macrophages (Runx1 and GATA2). Our results indicate that goldfish M17 is an essential inflammatory cytokine for proliferation and differentiation of goldfish progenitor cells.


Assuntos
Carpa Dourada , Macrófagos , Animais , Carpa Dourada/genética , Macrófagos/metabolismo , Citocinas/metabolismo , Fatores de Transcrição/genética , Fagocitose , Mamíferos
4.
Fish Shellfish Immunol ; 134: 108616, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36796597

RESUMO

Nigericin has been reported to induce apoptosis and pyroptosis in mammalian models. However, the effects and mechanism underlying the immune responses of teleost HKLs induced by nigericin remain enigmatic. To decipher the mechanism after nigericin treatment, the transcriptomic profile of goldfish HKLs was analyzed. The results demonstrated that a total of 465 differently expressed genes (DEGs) with 275 up-regulated and 190 down-regulated genes were identified between the control and nigericin treated groups. Among them, the top 20 DEG KEGG enrichment pathways were observed including apoptosis pathways. In addition, the expression level of selected genes (ADP4, ADP5, IRE1, MARCC, ALR1, DDX58) by quantitative real-time PCR showed a significant change after treatment with nigericin, which was generally identical to the expression patterns of the transcriptomic data. Furthermore, the treatment could induce cell death of HKLs, which was confirmed by LDH release and annexin V-FITC/PI assays. Taken together, our results support the idea that nigericin treatment might activate the IRE1-JNK apoptosis pathway in goldfish HKLs, which will provide insights into the mechanisms underlying HKLs immunity towards apoptosis or pyroptosis regulation in teleosts.


Assuntos
Carpa Dourada , Leucócitos , Animais , Nigericina/farmacologia , Apoptose , Rim , Proteínas Serina-Treonina Quinases , Mamíferos
5.
Chemosphere ; 308(Pt 2): 136279, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36064018

RESUMO

Emerging S-scheme heterojunction photocatalysts endowed with efficient charge separation and strong redox capacity have stimulated wide interests in dealing with environmental issues nowadays. In this work, we firstly fabricated the oxygen vacancy modified ZrTiO4-x nanocrystals, which was further combined with AgI to build the defective S-scheme AgI/ZrTiO4-x heterojunctions for visible-light photocatalytic norfloxacin degradation. The synthesized ZrTiO4-x nanocrystals and AgI/ZrTiO4-x heterojunctions displayed remarkably boosted norfloxacin degradation performance under visible-light irradiation. The reaction rate constant of the optimized AgI/ZrTiO4-x-5% heterojunction is as high as 0.01419 min-1, which is approximately 43.35 times that of AgI and 7.93 times that of ZrTiO4-x nanocrystals, and far superior to those of commercial TiO2 and commercial ZrO2. The high-performance photocatalytic norfloxacin degradation could be mainly attributed to the formation of S-scheme charge transfer pathways and oxygen vacancy defects. More significantly, AgI/ZrTiO4-x could also realize the effective photo-decomposition of other emerging pollutants. Finally, the visible-light photocatalytic performance and photocatalysis mechanism were investigated.


Assuntos
Poluentes Ambientais , Norfloxacino , Catálise , Luz , Oxigênio/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA