Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Colloid Interface Sci ; 622: 319-326, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35512595

RESUMO

Developing electrocatalysts with remarkable activity and durability is significant for efficient oxygen evolution reaction (OER). Herein, we designed phosphate doped Ni(OH)2/FeOOH hierarchical microtubes (denoted as POx-Ni(OH)2/FeOOH HMTs), obtained by phosphate doped NiFe Prussian blue analogue hierarchical microtubes (denoted as P-NF-PBA HMTs) completely reconstructing in OER process. POx-Ni(OH)2/FeOOH HMTs possess an extremely low overpotential of 237 mV at 30 mA cm-2 in alkaline electrolyte with the Tafel slope of 35 mV dec-1, and the catalysts can maintain excellent durability for 100 h at 30 mA cm-2. The remarkable electrochemical catalytic activity comes from the advantages of the hierarchical hollow structure, the modulation of electronic structure caused by phosphate doping, and the synergistic effect of Ni(OH)2 and FeOOH species produced by catalyst complete reconstruction in the OER process. This work may provide an effective strategy to develop highly efficient and durable electrocatalysts towards OER.

2.
J Colloid Interface Sci ; 623: 532-540, 2022 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-35597021

RESUMO

Lithium metal is considered to be an ideal anode material due to its ultra-high theoretical capacity and extremely low electric potential. Unfortunately, the infinite volume expansion and unregulated formation of lithium dendrites in the plating/stripping process restrict its practical utilization. Herein, we designed a hollow Co3[Co(CN)6]2 (CoCoPBA) embedded high-conductivity carbon film as a three-dimensional (3D) lithiophilic current collector (h-CoCoPBAs@SWCNT). The interwoven carbon nanotubes with hollow nanoparticles can effectively promote electron transfer and reduce local current density, adapting to the huge volume expansion in long-term electrochemical cycling. At the same time, lithiophilic hollow CoCoPBA nanoparticles provide abundant active sites due to their large surface area, efficiently reducing nucleation overpotential and making lithium deposition easier and more uniform, both confirmed by theoretical calculation and experiment. Accordingly, compared with bare Cu electrodes, h-CoCoPBAs@SWCNT electrodes have a flat and uniform Li deposition morphology, which is beneficial to enhance the cycle life of lithium metal anodes. And the symmetrical cell assembled by h-CoCoPBAs@SWCNT shows stable cycling performance of more than 500 h at 2 mA cm-2 with 1 mAh cm-2. Besides, the assembled lithium-sulfur full cell also has higher cycle stability and rate performance.

3.
ACS Appl Mater Interfaces ; 13(17): 20153-20161, 2021 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-33877793

RESUMO

The biggest obstacles of putting lithium-sulfur batteries into practice are the sluggish redox kinetics of polysulfides and serious "shuttle effect" under high sulfur mass loading and lean-electrolyte conditions. Herein, Fe3C/Fe3N@nitrogen-doped carbon nanotubes (NCNTs) as multifunctional sulfur hosts are designed to realize high-areal-capacity Li-S batteries. The Fe3N and Fe3C particles attached to NCNT can promote the conversion of polysulfides. Besides, NCNT can not only enhance the chemisorption of polysulfides but also increase the special surface area and electrical conductivity by constructing a three-dimensional skeleton network. Integrating the merits of high electrical conductivity, high catalytic activity, and strong chemical binding interaction with lithium polysulfides (LiPSs) to achieve in situ anchoring conversion, the Fe3C/Fe3N@NCNT multifunctional hosts realize high sulfur mass loading and accelerate redox kinetics. The novel Fe3C/Fe3N@NCNT/S composite cathode exhibits steady cycle ability and a high areal capacity of 9.10 mAh cm-2 with a sulfur loading of 13.12 mg cm-2 at 2.20 mA cm-2 after 50 cycles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA