Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 50
Filtrar
1.
Rev Sci Instrum ; 95(4)2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38564326

RESUMO

Optical thin films with high-reflectivity (HR) are essential for applications in quantum precision measurements. In this work, we propose a coating technique based on reactive magnetron sputtering with RF-induced substrate bias to fabricate HR-optical thin films. First, atomically flat SiO2 and Ta2O5 layers have been demonstrated due to the assistance of radio-frequency plasma during the coating process. Second, a distributed Bragg reflector (DBR) mirror with an HR of ∼99.999 328% centered at 1397 nm has been realized. The DBR structure is air-H{LH}19-substrate, in which the L and H denote a single layer of SiO2 with a thickness of 237.8 nm and a single layer of Ta2O5 with a thickness of 171.6 nm, respectively. This novel coating method would facilitate the development of HR reflectors and promote their wide applications in precision measurements.

2.
Reprod Biol Endocrinol ; 21(1): 116, 2023 Dec 05.
Artigo em Inglês | MEDLINE | ID: mdl-38053137

RESUMO

BACKGROUND: The incidence of Y chromosome microdeletions varies among men with infertility across regions and ethnicities worldwide. However, comprehensive epidemiological studies on Y chromosome microdeletions in Chinese men with infertility are lacking. We aimed to investigate Y chromosome microdeletions prevalence among Chinese men with infertility and its correlation with intracytoplasmic sperm injection (ICSI) outcomes. METHODS: This single-center retrospective study included 4,714 men with infertility who were evaluated at the Reproductive Center of the First Affiliated Hospital of Sun Yat-sen University between May 2017 and January 2021. Semen analysis and Y-chromosome microdeletion via multiplex polymerase chain reaction were conducted on the men. The study compared outcomes of 36 ICSI cycles from couples with male azoospermia factor (AZF)cd deletions with those of a control group, which included 72 ICSI cycles from couples without male Y chromosome microdeletions, during the same period. Both groups underwent ICSI treatment using ejaculated sperm. RESULTS: Among 4,714 Chinese men with infertility, 3.31% had Y chromosome microdeletions. The combined deletion of sY254 and sY255 in the AZFc region and sY152 in the AZFd region was the prevalent pattern of Y chromosome microdeletion, with 3.05% detection rate. The detection rates of AZF deletions in patients with normal total sperm count, mild oligozoospermia, severe oligozoospermia, cryptozoospermia, and azoospermia were 0.17%, 1.13%, 5.53%, 71.43%, and 7.54%, respectively. Compared with the control group, the AZFcd deletion group exhibited no significant difference in the laboratory results or pregnancy outcomes of ICSI cycles using ejaculated sperm. CONCLUSIONS: This is the largest epidemiological study on Y chromosome microdeletions in Chinese men with infertility. The study results underline the necessity for detecting Y chromosome microdeletion in men with infertility and severe sperm count abnormalities, especially those with cryptozoospermia. The combined deletion of sY254 and sY255 in the AZFc region and sY152 in the AZFd region was the most prevalent Y chromosome microdeletion pattern. Among patients with AZFcd deletion and ejaculated sperm, ICSI treatment can result in pregnancy outcomes, similar to those without AZFcd deletion.


Assuntos
Azoospermia , Infertilidade Masculina , Oligospermia , Gravidez , Feminino , Humanos , Masculino , Oligospermia/epidemiologia , Oligospermia/genética , Injeções de Esperma Intracitoplásmicas/métodos , Azoospermia/epidemiologia , Azoospermia/genética , Azoospermia/terapia , Estudos Retrospectivos , População do Leste Asiático , Prevalência , Sêmen , Infertilidade Masculina/epidemiologia , Infertilidade Masculina/genética , Infertilidade Masculina/terapia , Cromossomos Humanos Y/genética , Resultado da Gravidez , Fenótipo
3.
Water Res ; 244: 120499, 2023 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-37634456

RESUMO

Biological treatment that utilizes microalgae technology has demonstrated outstanding efficacy in the wastewater purification and nutrients recovery. However, the high turbidity of the digested piggery wastewater (DPW) leads to serious light attenuation and the culture mode of suspended microalgae results in a huge landing area. Thus, to overcome light attenuation in DPW, a non-immersed titled zigzag microalgae biofilm was constructed by attaching it onto a porous cotton cloth. As a result, the light could directly irradiate microalgae biofilm that attached on both sides of the cotton cloth, and the microalgal biofilm area was up to 6 m2 per bioreactor landing area. When the non-immersed zigzag microalgae biofilm bioreactor (N-Z-MBP) was used to treat wastewater with an ammonia nitrogen (NH4+-N) concentration of 362 mg L-1, the NH4+-N was completely removed in just 5 days and the maximum growth rate of microalgae biofilm reached 7.02 g m-2 d-1. After 21 days of long-term sequencing batch operation for the N-Z-MBP, the biomass density of the biofilm reached 52 g m-2 and remained at this high value for the next 14 days. Most importantly, during the 35 days' running, the NH4+ -N maximum removal rate of single batch reached up to 65 mg L-1 d-1 and its concentration in the effluent was always below the discharge standard value (80 mg L-1 form GB18596-2001 of China) and total phosphorus was completely removed in each batch. Furthermore, the biomass concentration of microalgae cells in the effluent of the N-Z-MBP was almost zero, indicating that the non-submerged biofilm achieved in situ separation of microalgae from the wastewater. This work suggests that the N-Z-MBP can effectively purify DPW over a long period, providing a possible strategy to treat wastewater with high ammonia nitrogen and high turbidity.


Assuntos
Poluentes Ambientais , Microalgas , Águas Residuárias , Amônia , Biofilmes , Nitrogênio , Fósforo , Biomassa
4.
Bioresour Technol ; 385: 129374, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-37352988

RESUMO

Fatty acid photodecarboxylase in Chlorella variabilis NC64A (CvFAP) performed excellent ability to exclusively decarboxylate renewable fatty acids for C1-shortened hydrocarbons fuel production under visible light. However, the large-scale application by such an approach is limited by the free state of CvFAP catalyst, which is unstable for efficient biofuel production. In this study, CvFAP was immobilized in magnetic nickel ferrite (NiFe2O4) nanoparticles for facile recovery by a simple procedure. The shift of Ni 2p in electron binding energy was detected to clarify the interaction between Ni2+ and histidine of CvFAP. The coordination of NiFe2O4 and CvFAP contributed to an efficient affinity binding with an immobilization capacity of 98 mg/g carrier. Hydrocarbon fuel concentration of 3.7 mM was obtained by NiFe2O4@CvFAP-induced photoenzymatic decarboxylation. The high stability of CvFAP in terms of residual enzyme activity of 79.7% at pH 9.0 and that of 68% at organic solvent ratio of 60%, respectively, were observed.


Assuntos
Chlorella , Nanopartículas , Ácidos Graxos/metabolismo , Chlorella/metabolismo , Fenômenos Magnéticos
5.
Bioresour Technol ; 382: 129120, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-37141996

RESUMO

The efficient cultivation of microalgae using CO2 from flue gas can be a win-win situation for both environmental protection and energy accessibility. In general, 10-20% of CO2 in flue gas would decrease pH and inhibit microalgae growth. However, Chlorella sorokiniana MB-1 under 15% CO2 showed a periodical auto-agglomeration, which promoted microalgae growth on the contrary in this study. The maximum biomass concentration of 3.27 g L-1 was higher than that cultivated with an optimal CO2 concentration. The pH decreased to 6.04 after the mixed gas with 15% CO2 (v/v) was bubbled into medium for 0.5 h, which resulted in auto-agglomeration to protect microalgae from acidification and keep a high specific growth rate of 0.03 h-1. Then the pH recovered to 7 during stabilization phase, auto-agglomeration ratio was up to 100% because of lamellar extracellular polymeric substances. Therefore, the interesting periodical agglomeration both enhanced growth and simplified harvesting.


Assuntos
Chlorella , Microalgas , Dióxido de Carbono/farmacologia , Biomassa
6.
Chem Commun (Camb) ; 59(44): 6674-6677, 2023 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-37096404

RESUMO

Green light was documented to improve the photostability of fatty acid photodecarboxylase from Chlorella variabilis (CvFAP). Compared to blue light, green light increased the pentadecane yield by 27.6% and improved the residual activity of CvFAP to 5.9-fold after the preillumination. Kinetics and thermodynamics indicated that blue light facilitated a high CvFAP activity.


Assuntos
Chlorella , Ácidos Graxos , Luz , Catálise
7.
Bioresour Technol ; 374: 128775, 2023 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-36828216

RESUMO

Gentle and effective pretreatment is necessary to produce clean lignocellulosic biomass-based fuels. Herein, inspired by the efficient lignin degradation in the foregut of termites, the microreactor system using immobilized laccase and recoverable vanillin was proposed. Firstly, the co-deposition coating of dopamine, hydrogen peroxide and copper sulfate was constructed for laccase immobilization and a high immobilization efficiency of 87.0% was obtained in 30 min. After storage for 10 days, 82.2% activity was maintained in the laccase-loaded microreactor, which is 210.0% higher than free laccase. In addition, 6% (w/w) vanillin can improve lignin degradation in the laccase-loaded microreactor without impairing laccase activity, leading to a 47.3% increment in cellulose accessibility. Finally, a high cellulose conversion rate of 88.1% can be achieved in 1 h with glucose productivity of 2.62 g L-1 h-1. These demonstrated that the appropriate addition of vanillin can synergize with immobilized laccase to enhance the conversion of lignocellulosic biomass.


Assuntos
Lacase , Lignina , Lignina/metabolismo , Lacase/metabolismo , Biomassa , Celulose
8.
Bioresour Technol ; 372: 128660, 2023 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-36693503

RESUMO

Aiming at optimizing the poor fluid mixing state in the traditional horizontal floating photobioreactors and reducing the high energy consumption and operational cost induced by electric-driven mixing, a novel floating photobioreactor with an embedded wind-driven agitating blade (WDAB-FPBR) was proposed in this study, which can effectively utilize both wind and wave energy for fluid mixing. The results show that the selected wind-driven agitating blade contributed to a decrement of 75.3% in mixing time and an increment of 87.5% in mass transfer coefficient, and meanwhile strengthened the fluid velocity along the light gradient. Owing to the enhanced fluid flow and mixing properties, an even distribution of algae cells was achieved in the WDAB floating photobioreactor, which resulted in an improvement of 140% in the photosynthesis efficiency of microalgae. From this, the biomass yield and carbon removal ratio showed an increment of 88.9% and 73.9%, respectively.


Assuntos
Microalgas , Fotobiorreatores , Vento , Luz , Fotossíntese , Biomassa
9.
Environ Res ; 216(Pt 3): 114645, 2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36323351

RESUMO

Microalgae biofilm-based culture provides an efficient CO2 reduction and wastewater treatment method for its high photosynthetic efficiency and density. As supporting substrates for microalgae biofilm, porous materials have a big available adsorption area, but mutual shading makes it difficult to transmit external light to the internal surface for attached cells' photosynthesis. Thus, light-guided particles (SiO2) were introduced into photosensitive resin to fabricate a light-guided ordered porous photobioreactor (PBR) by 3D printing technology in this study. The space utilization of the PBR was significantly enhanced and the effective microalgae adsorption area was increased by 13.6 times. Further, a thermo-responsive hydrogel was grafted onto the surface of the substrate to form a smart temperature-controllable interface that could enhance microalgae adsorption and desorption in both directions. When the thermo-responsive layer received light, it would generate heat due to the hydrogel's photo-thermal effect. And the surface temperature would then raise to 33 °C, higher than the hydrogel phase transition point of 32 °C, making the surface shrinking and more hydrophobicity for microalgae cells attachment. The microalgae cells' adsorption capacity increased by 103%, resulting in a high microalgae growth rate of 3.572 g m-2 d-1. When turning off the light, the surface temperature would cool down to below 20 °C, the surface would shrink. And the biofilm shows a 564.7% increase in desorption ability, realizing temperature-controlled microalgae harvesting.


Assuntos
Microalgas , Dióxido de Carbono , Adsorção , Temperatura , Porosidade , Dióxido de Silício , Fotobiorreatores , Biofilmes , Hidrogéis , Biomassa
10.
Bioresour Technol ; 367: 128232, 2023 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-36332862

RESUMO

As one of the fastest-growing carbon emission sources, the aviation sector is severely restricted by carbon emission reduction targets. Sustainable aviation fuel (SAF) has emerged as the most potential alternative to traditional aviation fuel, but harsh production technologies limit its commercialization. Fatty acids photodecarboxylase from Chlorella variabilis NC64A (CvFAP), the latest discovered photoenzyme, provides promising approaches to produce various carbon-neutral biofuels and fine chemicals. This review highlights the state-of-the-art strategies to enhance the application of CvFAP in carbon-neutral biofuel and fine chemicals production, including supplementing alkane as decoy molecular, screening efficient CvFAP variants with directed evolution, constructing genetic strains, employing biphasic catalytic system, and immobilizing CvFAP in an efficient photobioreactor. Furthermore, future opportunities are suggested to enhance photoenzymatic decarboxylation and explore the catalytic mechanism of CvFAP. This review provides a broad context to improve CvFAP catalysis and advance its potential applications.


Assuntos
Aviação , Chlorella , Descarboxilação , Biocombustíveis , Carbono
11.
J Environ Manage ; 326(Pt A): 116757, 2023 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-36395642

RESUMO

Biofilm-based microalgae culture combined with wastewater treatment is a promising biotechnology for environmental management. Light availability influences the accumulation of microalgal biomass and nutrient removal. A light attenuation model which comprehensively considered microalgal biofilm structure (density and biofilm thickness), pigments content, and extracellular polymeric substances content was developed to predict the light attenuation in biofilm according to the simplification of the radiative transfer equation. The predicted results were in good overall agreement with the experiment, with an average error of less than 9.02%. These factors (biofilm density, thickness, pigments content, and extracellular polymeric substances content) all contributed to the light intensity attenuation, but biofilm thickness caused the most dramatic attenuation under the same increment of relative change in actual culture. The scattering coefficient of the biofilm (0.433 m2/g) was less than that of the suspension (1.489 m2/g) under white incident light. It suggests that the dense structure of cells allows much light to be concentrated in the forward direction when transmitting. This model could be adopted to predict the light distribution in microalgal biofilm for the further design of efficient photobioreactors and the development of light optimization strategies.


Assuntos
Microalgas , Biofilmes , Fotobiorreatores , Biomassa , Biotecnologia
12.
Water Res ; 223: 119041, 2022 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-36081254

RESUMO

Treatment technologies based on microalgal biofilms have an enormous potential for dealing with water pollution because they can efficiently redirect nutrients from wastewater to renewable biomass feedstock. However, poor light transmittance is caused by the high turbidity of wastewater, which hinders the commercial application of microalgal biofilm-based wastewater treatment. Here, a bifunctional substrate with lighting and biofilm support functions was constructed using a light guide plate. In a biofilm photobioreactor (bPBR) with a bifunctional lighting/supporting substrate (BL/S substrate), light can directly irradiate the biofilm to avoid attenuation by the turbid wastewater. Direct irradiation of light onto the biofilm led to a 93.0% enhancement of microalgal photoconversion efficiency when compared to that of a supporting substrate without lighting (SO substrate). Meanwhile, the maximum growth rate of the microalgal biofilm on the BL/S substrate was 8.7 g m-2 d-1, which was increased by 60.3%. The removal rate of ammonia nitrogen (NH4+-N) from the digested wastewater contributed by the microalgal biofilm reached 22.6 mg L-1 d-1, which was higher than the previously reported that of NH4+-N from turbid digested wastewater by the biofilms. Furthermore, the BL/S substrate can facilitate the secretion of abundant extracellular polymeric substrates, which results in the stable adhesion of the biofilm onto the BL/S substrate. The optical density of the microalgae cells at the outlet of the bPBR with BL/S substrate was below 0.1, which was 94% lower than that of the bPBR with the SO substrate. The results indicated the BL/S substrate may avoid the loss of microalgal biomass, and almost all biomass could be easily harvested from the biofilm for algae-based biomass resources. Consequently, this study can offer a promising alternative with efficient treatment technologies for wastewater with high turbidity.


Assuntos
Microalgas , Amônia , Biofilmes , Biomassa , Iluminação , Nitrogênio , Águas Residuárias
13.
Bioresour Technol ; 363: 127891, 2022 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-36089133

RESUMO

The development of microalgae-bacteria symbiosis for treating wastewater is flourishing owing to its high biomass productivity and exceptional ability to purify contaminants. A nature-selected microalgae-bacteria symbiosis, mainly consisting of Dictyosphaerium and Pseudomonas, was used to treat oxytetracycline (OTC), ofloxacin (OFLX), and antibiotic-containing swine wastewater. Increased antibiotic concentration gradually reduced biomass productivity and intricately changed symbiosis composition, while 1 mg/L OTC accelerated the growth of symbiosis. The symbiosis biomass productivity reached 3.4-3.5 g/L (5.7-15.3 % protein, 18.4-39.3 % carbohydrate, and 2.1-3.9 % chlorophyll) when cultured in antibiotic-containing swine wastewater. The symbiosis displayed an excellent capacity to remove 76.3-83.4 % chemical oxygen demand, 53.5-62.4 % total ammonia nitrogen, 97.5-100.0 % total phosphorus, 96.3-100.0 % OTC, and 32.8-60.1 % OFLX in swine wastewater. The microbial community analysis revealed that the existence of OTC/OFLX increased the richness and evenness of microalgae but reduced bacteria species in microalgae-bacteria, and the toxicity of OFLX to bacteria was stronger than that of OTC.


Assuntos
Microalgas , Oxitetraciclina , Amônia/metabolismo , Animais , Antibacterianos/metabolismo , Antibacterianos/farmacologia , Bactérias , Biomassa , Carboidratos , Clorofila/metabolismo , Microalgas/metabolismo , Nitrogênio/metabolismo , Ofloxacino/metabolismo , Ofloxacino/farmacologia , Oxitetraciclina/metabolismo , Oxitetraciclina/farmacologia , Fósforo/metabolismo , Suínos , Simbiose , Águas Residuárias/química
14.
Environ Res ; 214(Pt 1): 113850, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-35817165

RESUMO

Microalgae-based technology provides a potential approach to biologically treating oxytetracycline (OTC) wastewater due to its environmental friendliness, low cost, and high efficiency. However, the OTC degradation and transformation characteristics by microalgae are still unclear and need further exploration. This study used microalgae Chlorella sorokiniana MB-1 for OTC wastewater treatment. The OTC with an initial concentration less than 50 mg L-1 promoted microalgae growth, while OTC with a concentration higher than 100 mg L-1 inhibited microalgae growth significantly. More than 99% OTC was removed with the biomass productivity up to 1.8 g L-1 when treated OTC with 10 mg L-1 initial concentration for 7 days. Chlorophyll and total sugar contents decreased, while protein and lipid contents increased compared to the control without OTC. The malondialdehyde content firstly reduced but subsequently enhanced when increased OTC concentration, while superoxide dismutase content gradually enhanced, manifesting that traces of OTC stimulate microalgae antioxidant capacity, while the increasing OTC caused further oxidative damage to microalgae cells. The removal pathways of OTC mainly include photolysis (75.8%), biodegradation (17.8%), biosorption (3.6%), and hydrolysis (2.7%). Overall, removing OTC by microalgae was confirmed to be an excellent technology for treating antibiotics wastewater whilst accumulating microalgae biomass.


Assuntos
Chlorella , Microalgas , Oxitetraciclina , Purificação da Água , Antibacterianos , Biomassa , Águas Residuárias
15.
Waste Manag ; 148: 12-21, 2022 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-35644122

RESUMO

Recovery of valuable metals from spent Li-ion batteries has prominent economic and environmental benefits. In this study, a novel approach for recycling valuable metals from spent LiCoO2 batteries via co-pyrolysis with three different carbonaceous materials (waste polyethylene, biomass, and coal)) was proposed and evaluated. The thermodynamic analysis proved that carbonaceous materials (mainly carbon) were theoretically able to facilitate the decomposition process of LiCoO2. The promotion effect on LiCoO2 decomposition was in the following order: coal > biomass > polyethylene, and the decomposition temperature of LiCoO2 could significantly reduce by 400 °C via adding coal. The char produced from the carbonaceous materials, rather than the volatiles, played an important role in LiCoO2 decomposition and reduction. The pyrolysis products of LiCoO2 and coal mixture exhibited typical superparamagnetism and hysteresis behaviours, which benefitted the subsequent magnetic separation. The recovery rates of Co and Li were sensitive to the pyrolysis temperature and residence time, respectively. A high proportion of Co was in the form of CoO below 800 °C and had not been completely reduced, leading to the relatively lower recovery rates of Co below 800 °C. The optimal recovery rates of Co (96.8%) and Li (88.7%) were obtained at the pyrolysis temperature of 800 °C and the residence time of 10 min. The final recovery products were Co and Li2CO3 with rather high crystallinities and purities. Therefore, this study provided a novel approach for the efficient recycling of valuable metals from spent Li-ion batteries with high application prospects.

16.
Bioresour Technol ; 359: 127475, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35714782

RESUMO

Hydrothermal pretreatment with diluted acid or alkali can disrupt the compact structure of wheat straw at a moderate temperature for efficient enzymatic saccharification. However, the quantitative analysis between the physicochemical properties and enzymatic hydrolyzability of hydrothermal pretreated lignocellulose was rarely investigated, which hindered the development of model-based applications for process design and control. Herein, correlation analysis (CA) and principal component analysis (PCA) were conducted to elucidate the dominant factors affecting the enzymatic hydrolyzability and quantitative relationship between them. CA results suggested the major positive factor affecting carbohydrate conversion was cellulose content (r = 0.86). Through logarithmic processing and linear combination, these intercorrelated factors were successfully converted into two newly uncorrelated variables named the first principal component (PC1) and the second principal component (PC2). The initial hydrolysis rate and carbohydrate conversion can be well predicted by PC1 and PC2 scores through multiple linear regression with a high R-squared (0.91 and 0.80).


Assuntos
Lignina , Triticum , Carboidratos , Celulose/química , Hidrólise , Lignina/química , Temperatura , Triticum/química
17.
Sci Total Environ ; 839: 156144, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35609698

RESUMO

A promising green hydrothermal process was used to produce biobased nanomaterials carbon dots (CDs) by using microalgae Chlorella pyrenoidosa (CP) and its main model compounds (i.e., glucose, glycine, and octadecanoic acid). The possible reaction pathway including hydrolysis, Amadori rearrangement, cyclization/aromatization, and polymerization was first proposed for the hydrothermal process to produce microalgae-based CDs. Interactions among carbohydrates and proteins in microalgae were vital intermediate reactions in the generation of CDs. The mass yield of CDs reached 7.2% when the CP was hydrothermally treated with 20:1 of liquid-to-solid ratio at 230 °C for 6 h. It was confirmed that nitrogen, sulfur, phosphorous, and potassium were doped onto CP-based CDs (CD-CP) successfully without additional reagents or treatments. The CD-CP yield was 4.0-24.3 times higher than that of model compound-based CDs. Regarding morphology, CD-CP was constituted by many spherical nanoparticles smaller than 20 nm. These CDs emitted blue fluorescence under ultraviolet light, and the fluorescence quantum yield of CD-CP was 4.7-9.4 times higher than that of CP model compound-based CDs. Last, CD-CP displayed broad application prospects as a sensor for Fe3+ detection in wastewater with high sensitivity.


Assuntos
Chlorella , Microalgas , Pontos Quânticos , Carbono/metabolismo , Fluorescência , Corantes Fluorescentes , Microalgas/metabolismo , Nitrogênio/metabolismo
18.
J Biotechnol ; 352: 26-35, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-35605791

RESUMO

A novel magnet-driven rotary mixing aerator (MDRMA) was proposed to reduce the diameter and rising rate of bubbles while improving CO2 mass transfer during microalgae growth in a column photobioreactor. Visualization results showed that the bubble number density increased significantly with the increasing rotation rate of MDRMA. As the rotation rate increased from 0 to 300 r min-1, the average bubble diameter decreased from 3.8 mm to 2.0 mm (47.4% reduction), while the corresponding average bubble rising rate decreased from 0.32 m s-1 to 0.22 m s-1 (31.3% reduction). Notably, when the rotation rate of MDRMA exceeded 300 r min-1, a significant number of microbubbles with diameters below 0.5 mm were generated. When synthetic flue gas containing 12% CO2 (v/v) was supplied for microalgae cultivation, a maximum biomass concentration of 1.75 g L-1 was obtained with rotating MDRMA at 200 r min-1, showing a 57.7% increase compared to the control aerated with a silicone tube aerator. Meanwhile, the pigment content reached 14.48 mg L-1, 22.7% higher than that of the control.


Assuntos
Microalgas , Biomassa , Ciclo do Carbono , Dióxido de Carbono , Imãs , Fotobiorreatores
19.
Langmuir ; 38(10): 3284-3296, 2022 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-35231169

RESUMO

Microalgal biofilm, a stable community of many algal cells attached to a solid substrate, plays a significant role in the efficient accumulation of renewable energy feedstocks, wastewater treatment, and carbon reduction. The adhesion tendency of microalgal cells on solid substrates is the basis for controlling the formation and development of microalgal biofilm. To promote the adhesion of microalgal cells on solid substrates, it is necessary to clarify which surface properties have to be changed in the most critical factors affecting the adhesion. However, there have been few systematic discussions on what surface properties influence the adhesion tendency of algal cells on solid substrates. In this study, the essential principle of microalgal cell adhesion onto solid substrates was explored from the perspective of the interaction energy between microalgal cells and solid substrates. The influence of surface properties between microalgal cells and solid substrates on interaction energies was discussed via extended Derjaguin-Landau-Verwey-Overbeek (eDLVO) theory and a sensitivity analysis. The results showed that surface properties, including surface potential (ξ) and surface free energy components, significantly affect the adhesion tendency of microalgal cells on different solid substrates. When the solid surface possesses positive charges (ξ > 0), reducing ξ or the electron donor components of the solid substrate (γs-) is an effective measure to promote microalgal cell adhesion onto the solid substrate. When the solid surface possesses negative charges (ξ < 0), an increase in either γs- or the absolute value of ξ should be avoided in the process of microalgae adhesion. Overall, this research provides a direction for the selection of solid substrates and a direction for surface modification to facilitate the adhesion tendency of microalgal cells on solid substrates under different scenarios.


Assuntos
Microalgas , Biofilmes , Biomassa , Adesão Celular , Propriedades de Superfície
20.
Bioresour Technol ; 348: 126777, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-35104654

RESUMO

As the sole energy for photosynthesis, light decrease rapidly with path due to absorption by pigments and scattering by cells in microalgal suspensions. By comprehensively considering cell concentrations, pigment components, and light spectra, a modified Cornet model for light transmission in microalgal suspensions is established. The developed model better fits experimental data with a higher adjusted R2, which is 5% higher than the model that is based only on cell concentration. The attenuation of blue light is the most severe, followed by red and green light. Among the three main pigments, total carotenoids contribute the most to the absorption of blue and green light (with contribution coefficients of 89.26 ± 4.53% and 46.04 ± 3.77%, respectively), and chlorophyll a contributes the most to the absorption of red light (with a contribution coefficient of 75.33 ± 5.08%). This study provides a better understanding and prediction of light transmission during microalgal cultivation.


Assuntos
Microalgas , Carotenoides/metabolismo , Clorofila , Clorofila A , Luz , Microalgas/metabolismo , Fotossíntese
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA