Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
1.
J Colloid Interface Sci ; 677(Pt A): 918-927, 2025 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-39128286

RESUMO

The lignin nanoparticles (LNPs) synthesis relies on lignin polymers with heterogeneous molecules and properties, which impose significant limitations on the preparation and property regulation. The multiscale structure of lignin from monomers to oligomers, provides a potential pathway for precise regulation of its physical and chemical properties. The study addresses this challenge by employing coniferyl alcohol and sinapyl alcohol as monomers and separately utilizing the Zulaufverfaren (ZL) and Zutropfverfaren (ZT) methods to synthesize different types of lignin dehydrogenation polymers (DHPs) including guaiacyl (G)-ZL-DHP, G-ZT-DHP, syringyl (S)-ZL-DHP, and S-ZT-DHP. The investigation highlights the chemical bonds as essential components of lignin primary structure. Additionally, the secondary structure is influenced by branched and linear molecular structures. G unit provides some branching points, which are utilized and amplified in the ZL process of DHPs synthesis. The branched DHPs aggregate at the edge and form rod-like LNPs. While linear DHPs aggregate around the center, presenting polygonal LNPs. The study identifies that the branched LNPs, characterized by more surface charges and lower steric hindrance, can form a stable complex with chitin nanofibers. Emulsions with varying oil-to-water ratios were subsequently prepared, opening a new window for the application of LNPs in fields such as food and cosmetics.

2.
Artigo em Inglês | MEDLINE | ID: mdl-39450660

RESUMO

All-inorganic perovskite solar cells (APSCs) are a promising photovoltaic technology due to their unique physical and optical properties. For printable all-inorganic perovskite solar cells, the key factors limiting their photoelectric conversion performance are the crystallization of perovskite and the hole collection capability at the perovskite-carbon interface. In this study, leveraging the high-temperature tolerance of CsPbBr3 perovskite, the sublimation and recrystallization processes were controlled, significantly improving the crystalline quality of the perovskite and suppressing the generation of the nonphotovoltaic CsPb2Br5 phase. Furthermore, a continuous distribution of high-quality CsPbBr3 crystals was achieved at the interface between the carbon electrode and the zirconium oxide layer, ensuring efficient collection of photogenerated holes. The photoelectric conversion efficiency of the printable mesoscopic all-inorganic perovskite solar cell was increased from 5.04 to 8.34% (with a record value of 10.04%) and achieved an ultrahigh open-circuit voltage of 1.54 V due to the significant improvement in the crystal quality of CsPbBr3. This study proposes a novel strategy to enhance the photovoltaic conversion performance of carbon-based all-inorganic perovskite solar cells by suppressing the presence of nonphotovoltaic phases.

3.
Mol Cancer Ther ; 2024 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-39087485

RESUMO

KRAS is the most frequently dysregulated oncogene with high prevalence in NSCLC, colorectal cancer, and pancreatic cancer. FDA-approved sotorasib and adagrasib provide breakthrough therapies for cancer patients with KRASG12C mutation. However, there is still high unmet medical need for new agents targeting broader KRAS-driven tumors. An emerging and promising opportunity is to develop a pan KRAS inhibitor by suppressing the upstream protein SOS1. SOS1 is a key activator of KRAS and facilitates the conversion of GDP-bound KRAS state to GTP-bound KRAS state. Binding to its catalytic domain, small molecule SOS1 inhibitor has demonstrated the ability to suppress KRAS activation and cancer cell proliferation. RGT-018, a potent and selective SOS1 inhibitor, was identified with optimal drug-like properties. In vitro, RGT-018 blocked the interaction of KRAS:SOS1 with single digit nM potency and is highly selective against SOS2. RGT-018 inhibited KRAS signaling and the proliferation of a broad spectrum of KRAS-driven cancer cells as a single agent in vitro. Further enhanced anti-proliferation activity was observed when RGT-018 was combined with MEK, KRASG12C, EGFR or CDK4/6 inhibitors. Oral administration of RGT-018 inhibited tumor growth and suppressed KRAS signaling in tumor xenografts in vivo. Combination with MEK or KRASG12C inhibitors led to significant tumor regression. Furthermore, RGT-018 overcame the resistance to the approved KRASG12C inhibitors caused by clinically acquired KRAS mutations either as a single agent or in combination. RGT-018 displayed promising pharmacological properties for combination with targeted agents to treat a broader KRAS-driven patient population.

4.
Int J Biol Macromol ; 270(Pt 1): 132154, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38734331

RESUMO

Flaxseed oil, rich in α-linolenic acid, plays a crucial role in various physiological processes. However, its stability presents certain challenges. In this study, the natural lignin-carbohydrate complex (LCC) was used to prepare the physical and oxidative stability of flaxseed oil-in-water emulsions. The LCC was characterized by HPLC, GPC, and FT-IR. The stability of emulsions was evaluated by viscosity, modulus, and micro-morphology changes. Then, the oxidation products were monitored by UV-vis spectrophotometer and HPLC. The results revealed that the high internal phase emulsion (HIPE) was successfully prepared with 2.5 wt% LCC at an oil/water ratio of 75/25 (v/v). Small droplet size (13.361 µm) and high viscosity (36,500 mPa·s) were found even after 30-day storage. Steric interactions of the LCC play a crucial role in ensuring stability, intricately linked to the interfacial properties of the emulsion. Meanwhile, the oxidative stability of α-linolenic acid in the encapsulated flaxseed oil was significantly higher than that in the bulk flaxseed oil. The results revealed that the LCC as a suitable emulsifier opens a new window for the storage of functional lipids rich in polyunsaturated fatty acids.


Assuntos
Emulsões , Lignina , Óleo de Semente do Linho , Oxirredução , Água , Óleo de Semente do Linho/química , Emulsões/química , Lignina/química , Água/química , Viscosidade , Carboidratos/química , Ácido alfa-Linolênico/química , Tamanho da Partícula
5.
Light Sci Appl ; 13(1): 94, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658538

RESUMO

Integrated switches play a crucial role in the development of reconfigurable optical add-drop multiplexers (ROADMs) that have greater flexibility and compactness, ultimately leading to robust single-chip solutions. Despite decades of research on switches with various structures and platforms, achieving a balance between dense integration, low insertion loss (IL), and polarization-dependent loss (PDL) remains a significant challenge. In this paper, we propose and demonstrate a 32 × 4 optical switch using high-index doped silica glass (HDSG) for ROADM applications. This switch is designed to route any of the 32 inputs to the express ports or drop any channels from 32 inputs to the target 4 drop ports or add any of the 4 ports to any of the 32 express channels. The switch comprises 188 Mach-Zehnder Interferometer (MZI) type switch elements, 88 optical vias for the 44 optical bridges, and 618 waveguide-waveguide crossings with three-dimensional (3D) structures. At 1550 nm, the fiber-to-fiber loss for each express channel is below 2 dB, and across the C and L bands, below 3 dB. For each input channel to all 4 drop/add channels at 1550 nm, the loss is less than 3.5 dB and less than 5 dB across the C and L bands. The PDLs for all express and input channels to the 4 drop/add channels are below 0.3 dB over the C band, and the crosstalk is under -50 dB for both the C and L bands.

6.
Structure ; 32(7): 907-917.e7, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38582077

RESUMO

PI3Kα is a lipid kinase that phosphorylates PIP2 and generates PIP3. The hyperactive PI3Kα mutation, H1047R, accounts for about 14% of breast cancer, making it a highly attractive target for drug discovery. Here, we report the cryo-EM structures of PI3KαH1047R bound to two different allosteric inhibitors QR-7909 and QR-8557 at a global resolution of 2.7 Å and 3.0 Å, respectively. The structures reveal two distinct binding pockets on the opposite sides of the activation loop. Structural and MD simulation analyses show that the allosteric binding of QR-7909 and QR-8557 inhibit PI3KαH1047R hyper-activity by reducing the fluctuation and mobility of the activation loop. Our work provides a strong rational basis for a further optimization and development of highly selective drug candidates to treat PI3KαH1047R-driven cancers.


Assuntos
Microscopia Crioeletrônica , Simulação de Dinâmica Molecular , Humanos , Regulação Alostérica , Classe I de Fosfatidilinositol 3-Quinases/metabolismo , Classe I de Fosfatidilinositol 3-Quinases/genética , Classe I de Fosfatidilinositol 3-Quinases/química , Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Ligação Proteica , Sítios de Ligação , Sítio Alostérico , Inibidores de Fosfoinositídeo-3 Quinase/farmacologia , Inibidores de Fosfoinositídeo-3 Quinase/química
7.
Opt Express ; 32(7): 11281-11295, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38570979

RESUMO

We report a dual-polarization radio frequency (RF) channelizer based on microcombs. Two high-Q micro-ring resonators (MRRs) with slightly different free spectral ranges (FSRs) are used: one MRR is pumped to yield soliton crystal microcombs ("active"), and the other MRR is used as a "passive" periodic optical filter supporting dual-polarization operation to slice the RF spectrum. With the tailored mismatch between the FSRs of the active and passive MRRs, wideband RF spectra can be channelized into multiple segments featuring digital-compatible bandwidths via the Vernier effect. Due to the use of dual-polarization states, the number of channelized spectral segments, and thus the RF instantaneous bandwidth (with a certain spectral resolution), can be doubled. In our experiments, we used 20 microcomb lines with ∼ 49 GHz FSR to achieve 20 channels for each polarization, with high RF spectra slicing resolutions at 144 MHz (TE) and 163 MHz (TM), respectively; achieving an instantaneous RF operation bandwidth of 3.1 GHz (TE) and 2.2 GHz (TM). Our approach paves the path towards monolithically integrated photonic RF receivers (the key components - active and passive MRRs are all fabricated on the same platform) with reduced complexity, size, and unprecedented performance, which is important for wide RF applications with digital-compatible signal detection.

8.
PLoS Genet ; 20(1): e1011134, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-38241355

RESUMO

It has been well established that cancer cells can evade immune surveillance by mutating themselves. Understanding genetic alterations in cancer cells that contribute to immune regulation could lead to better immunotherapy patient stratification and identification of novel immune-oncology (IO) targets. In this report, we describe our effort of genome-wide association analyses across 22 TCGA cancer types to explore the associations between genetic alterations in cancer cells and 74 immune traits. Results showed that the tumor microenvironment (TME) is shaped by different gene mutations in different cancer types. Out of the key genes that drive multiple immune traits, top hit KEAP1 in lung adenocarcinoma (LUAD) was selected for validation. It was found that KEAP1 mutations can explain more than 10% of the variance for multiple immune traits in LUAD. Using public scRNA-seq data, further analysis confirmed that KEAP1 mutations activate the NRF2 pathway and promote a suppressive TME. The activation of the NRF2 pathway is negatively correlated with lower T cell infiltration and higher T cell exhaustion. Meanwhile, several immune check point genes, such as CD274 (PD-L1), are highly expressed in NRF2-activated cancer cells. By integrating multiple RNA-seq data, a NRF2 gene signature was curated, which predicts anti-PD1 therapy response better than CD274 gene alone in a mixed cohort of different subtypes of non-small cell lung cancer (NSCLC) including LUAD, highlighting the important role of KEAP1-NRF2 axis in shaping the TME in NSCLC. Finally, a list of overexpressed ligands in NRF2 pathway activated cancer cells were identified and could potentially be targeted for TME remodeling in LUAD.


Assuntos
Adenocarcinoma de Pulmão , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Proteína 1 Associada a ECH Semelhante a Kelch/genética , Estudo de Associação Genômica Ampla , Fator 2 Relacionado a NF-E2/genética , Neoplasias Pulmonares/genética , Adenocarcinoma de Pulmão/genética , Microambiente Tumoral/genética , Prognóstico
9.
Opt Express ; 31(23): 37749-37762, 2023 Nov 06.
Artigo em Inglês | MEDLINE | ID: mdl-38017898

RESUMO

Soliton crystals are a novel form of microcomb, with relatively high conversion efficiency, good thermal robustness, and simple initiation among the methods to generate them. Soliton crystals can be easily generated in microring resonators with an appropriate mode-crossing. However, fabrication defects can significantly affect the mode-crossing placement and strength in devices. To enable soliton crystal states to be harnessed for a broader range of microcomb applications, we need a better understanding of the link between mode-crossing properties and the desired soliton crystal properties. Here, we investigate how to generate the same soliton crystal state in two different microrings, how changes in microring temperature change the mode-crossing properties, and how mode-crossing properties affect the generation of our desired soliton crystal state. We find that temperature affects the mode-crossing position in these rings but without major changes in the mode-crossing strength. We find that our wanted state can be generated over a device temperature range of 25 ∘C, with different mode-crossing properties, and is insensitive to the precise mode-crossing position between resonances.

10.
Opt Express ; 31(6): 10525-10532, 2023 Mar 13.
Artigo em Inglês | MEDLINE | ID: mdl-37157597

RESUMO

Silicon nitride (SiN) integrated optical waveguides have found a wide range of applications due to their low loss, broad wavelength transmission band and high nonlinearity. However, the large mode mismatch between the single-mode fiber and the SiN waveguide creates a challenge of fiber coupling to these waveguides. Here, we propose a coupling approach between fiber and SiN waveguides by utilizing the high-index doped silica glass (HDSG) waveguide as the intermediary to smooth out the mode transition. We achieved fiber-to-SiN waveguide coupling efficiency of lower than 0.8 dB/facet across the full C and L bands with high fabrication and alignment tolerances.

11.
Bioorg Med Chem Lett ; 80: 129084, 2023 01 15.
Artigo em Inglês | MEDLINE | ID: mdl-36423823

RESUMO

In the treatment of non-small cell lung cancer (NSCLC), patients harboring exon 20 insertion mutations in the epidermal growth factor receptor (EGFR) gene (EGFR) have few effective therapies because this subset of mutants is generally resistant to most currently approved EGFR inhibitors. This report describes the structure-guided design of a novel series of potent, irreversible inhibitors of EGFR exon 20 insertion mutations, including the V769_D770insASV and D770_N771insSVD mutants. Extensive structure-activity relationship (SAR) studies led to the discovery of mobocertinib (compound 21c), which inhibited growth of Ba/F3 cells expressing the ASV insertion with a half-maximal inhibitory concentration of 11 nM and with selectivity over wild-type EGFR. Daily oral administration of mobocertinib induced tumor regression in a Ba/F3 ASV xenograft mouse model at well-tolerated doses. Mobocertinib was approved in September 2021 for the treatment of adult patients with advanced NSCLC with EGFR exon 20 insertion mutations with progression on or after platinum-based chemotherapy.


Assuntos
Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Camundongos , Animais , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/patologia , Mutagênese Insercional , Mutação , Receptores ErbB , Éxons , Inibidores de Proteínas Quinases/farmacologia , Inibidores de Proteínas Quinases/uso terapêutico
12.
Animals (Basel) ; 12(18)2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-36139294

RESUMO

Urbanization is expanding rapidly worldwide, and brings additional selection pressure on animals. The song differences between urban and rural songbirds have been widely verified, but the effects of urban morphological variation on long-settled urban birds have been poorly explored. Here, we investigated the distribution and song differences of a common resident songbird-the oriental magpie-robin (Copsychus saularis) between three urban morphology types (i.e., urban park, low-rise residential area, and high-rise residential area). The results indicated that the population density in low-rise residential areas was significantly higher than in urban parks, while it was the lowest in high-rise residential areas. Males in low-rise residential areas had greater song length, syllable numbers, frequency bandwidth, and song diversity than those in urban parks. The song differences were mainly related to habitat types, independent of singing height and perch type. Our findings suggest that low-rise residential areas may provide preferred song post sites for the oriental magpie-robin, which is well-adapted to the low-rise building morphology, but rejects the emerging high-rise buildings. Future studies are needed to assess the effects of urban morphological variation on more resident animals to determine which urban morphologies are conducive to enhancing biodiversity and encouraging animals to settle in urban areas.

13.
Opt Lett ; 47(15): 3884-3887, 2022 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-35913338

RESUMO

We report the first, to the best of our knowledge, observation of second-harmonic generation (SHG) in a high-index doped silica micro-ring resonator, due to the symmetry-breaking-induced χ(2) at the core and cladding interface of the waveguide. The generated SH power is shown to have quadratic dependence on the in-cavity power of the fundamental pump at around 1550 nm. The pumping wavelength sweep method is adopted to fulfill the phase-matching condition for maximum conversion efficiency of SHG. This work offers a new approach to generate a visible source for the visible-light integrated optical platform from infrared-visible light conversion.

14.
Open Life Sci ; 17(1): 208-220, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35415239

RESUMO

The purpose of this study was to explore the regulatory mechanism of Annexin A1 (ANXA1) in glioma cells in the inflammatory microenvironment induced by tumour necrosis factor α (TNF-α) and its effects on glioma cell proliferation. CCK-8 analysis demonstrated that TNF-α stimulation promotes rapid growth in glioma cells. Changes in tumour necrosis factor receptor 1 (TNFR1) and ANXA1 expression in glioma cells stimulated with TNF-α were revealed through western blot analysis and immunofluorescence staining. Coimmunoprecipitation analysis revealed that ANXA1 interacts with TNFR1. Moreover, we found that ANXA1 promotes glioma cell growth by activating the p65 and Akt signalling pathways. Finally, immunohistochemistry analysis showed an obvious correlation between ANXA1 expression and Ki-67 in glioma tissues. In summary, our results indicate that the TNF-α/TNFR1/ANXA1 axis regulates the proliferation of glioma cells and that ANXA1 plays a regulatory role in the inflammatory microenvironment.

15.
J Chem Phys ; 155(21): 214701, 2021 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-34879663

RESUMO

The wetting state of surfaces can be rendered to a highly hydrophobic state by the deposition of hydrophilic gas phase synthesized Ag nanoparticles (NPs). The aging of Ag NPs leads to an increase in their size, which is also associated with the presence of Ag adatoms on the surface between the NPs that have a strong effect on the wetting processes. Furthermore, surface airborne hydrocarbons were removed by UV-ozone treatment, providing deeper insight into the apparent mobility of the NPs on different surfaces and their subsequent ripening and aging. In addition, the UV-ozone treatment revealed the presence of adatoms during the magnetron sputtering process. This surface treatment lowers the initial contact angle of the substrates and facilitates the mobility of Ag NPs and adatoms on the surface of substrates. Adatoms co-deposited on clean high surface energy substrates will nucleate on Ag NPs that will remain closely spherical and preserve the pinning effect due to the water nanomeniscus. If the adatoms are co-deposited on a UV-ozone cleaned low surface energy substrate, their mobility is restricted, and they will nucleate in two-dimensional islands and/or nanoclusters on the surface instead of connecting to existing Ag NPs. This growth results in a rough surface without overhangs, where the wetting state is reversed from hydrophobic to hydrophilic. Finally, different material surfaces of transmission electron microscopy grids revealed strong differences in the sticking coefficient for the Ag NPs, suggesting another factor that can strongly affect their wetting properties.

16.
Cancer Discov ; 11(7): 1672-1687, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-33632773

RESUMO

Most EGFR exon 20 insertion (EGFRex20ins) driver mutations in non-small cell lung cancer (NSCLC) are insensitive to approved EGFR tyrosine kinase inhibitors (TKI). To address the limitations of existing therapies targeting EGFR-mutated NSCLC, mobocertinib (TAK-788), a novel irreversible EGFR TKI, was specifically designed to potently inhibit oncogenic variants containing activating EGFRex20ins mutations with selectivity over wild-type EGFR. The in vitro and in vivo activity of mobocertinib was evaluated in engineered and patient-derived models harboring diverse EGFRex20ins mutations. Mobocertinib inhibited viability of various EGFRex20ins-driven cell lines more potently than approved EGFR TKIs and demonstrated in vivo antitumor efficacy in patient-derived xenografts and murine orthotopic models. These findings support the ongoing clinical development of mobocertinib for the treatment of EGFRex20ins-mutated NSCLC. SIGNIFICANCE: No oral EGFR-targeted therapies are approved for EGFR exon 20 insertion (EGFRex20ins) mutation-driven NSCLC. Mobocertinib is a novel small-molecule EGFR inhibitor specifically designed to target EGFRex20ins mutants. Preclinical data reported here support the clinical development of mobocertinib in patients with NSCLC with EGFR exon 20 insertion mutations.See related commentary by Pacheco, p. 1617.This article is highlighted in the In This Issue feature, p. 1601.


Assuntos
Compostos de Anilina/uso terapêutico , Antineoplásicos/uso terapêutico , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Éxons , Indóis/uso terapêutico , Neoplasias Pulmonares/tratamento farmacológico , Pirimidinas/uso terapêutico , Compostos de Anilina/farmacologia , Animais , Antineoplásicos/farmacologia , Carcinoma Pulmonar de Células não Pequenas/genética , Linhagem Celular Tumoral/efeitos dos fármacos , Receptores ErbB , Humanos , Indóis/farmacologia , Neoplasias Pulmonares/genética , Camundongos , Mutagênese Insercional , Pirimidinas/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
17.
Nanotechnology ; 31(44): 444001, 2020 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-32585644

RESUMO

In semiconductor nanowire (NW) photodetectors, the Schottky barrier formed by the contact between metal and semiconductor can act as a depletion layer. For NW structures with a smaller diameter, the depletion region is especially important to the carrier transport. We prepared a GaAs/AlGaAs quantum well NW photodetector with a two-dimensional electron-hole tube, in which the two-dimensional hole tube (2DHT) formed by the inner layer of GaAs and AlGaAs has the most important role in the regulation of carriers. By adjusting the bias voltage to vary the depth of the depletion region, we have confirmed the influence of the depletion region in a 2DHT. A significant inflection point was found in the responsivity-voltage curve at 1.5 V. By combining the depletion region and 2DHT, the responsivity of the fabricated device was increased by 18 times to 0.199 A W-1 and the detectivity is increased by 5 times to 5.8 × 1010 Jones, compared to the pure GaAs NW photodetector. Reasonable combination of depletion layer and 2DHT was proved to promote high-performance NW photodetector.

18.
Nano Lett ; 20(4): 2654-2659, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32101689

RESUMO

Here, we design and engineer an axially asymmetric GaAs/AlGaAs/GaAs (G/A/G) nanowire (NW) photodetector that operates efficiently at room temperature. Based on the I-type band structure, the device can realize a two-dimensional electron-hole tube (2DEHT) structure for the substantial performance enhancement. The 2DEHT is observed to form at the interface on both sides of GaAs/AlGaAs barriers, which constructs effective pathways for both electron and hole transport in reducing the photocarrier recombination and enhancing the device photocurrent. In particular, the G/A/G NW photodetector exhibits a responsivity of 0.57 A/W and a detectivity of 1.83 × 1010 Jones, which are about 7 times higher than those of the pure GaAs NW device. The recombination probability has also been significantly suppressed from 81.8% to 13.2% with the utilization of the 2DEHT structure. All of these can evidently demonstrate the importance of the appropriate band structure design to promote photocarrier generation, separation, and collection for high-performance optoelectronic devices.

19.
Int J Anal Chem ; 2019: 8961837, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31186647

RESUMO

A new colorimetric assay for the detection of sulfide anions with high sensitivity and selectivity is reported, utilizing Au-Hg alloy nanorods (Au-HgNRs) as probe. Au-HgNRs were prepared by modifying gold nanorods (AuNRs) with reducing agent and mercury ions. In an aqueous solution with sulfide anions, the formation of mercuric sulfide due to redox reaction between the amalgams and sulfide anions greatly changed the surface chemistry and morphology of the Au-HgNRs, leading to a red shift of the localized surface plasmon resonance (LSPR) absorption peak, accompanied by a change in colorimetric response. A good linear relationship was obtained between the LSPR peak wavelength shift and concentration of sulfide anion in the range of 1 × 10-5-1 × 10-4 mol/L. The selectivity of this method has been investigated by other anions. The colorimetric sensing system successfully detected sulfide in wastewater from leather industry.

20.
Sensors (Basel) ; 17(6)2017 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-28574458

RESUMO

In this paper, a novel two-dimensional (2D) direction-of-arrival (DOA) estimation algorithm for the mixed circular and strictly noncircular sources is proposed. A general array model with a mixture of signals is firstly built based on uniform rectangular arrays (URAs), and then, the approach, which uses the rank-reduction-based ROOT-MUSIC, can solve 2D DOA estimation problem. Besides, the theoretical error of the proposed algorithm, a criterion of the performance for evaluation, is analyzed by the first-order Taylor expression using second-order statistics. As verified by the simulation results, a better DOA estimation performance and a lower computational complexity are achieved by the proposed algorithm than the existing methods resorting to the noncircularity of the incoming signals.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA