Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 15 de 15
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sci Adv ; 9(44): eadh4379, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37910620

RESUMO

Ovarian cancer (OC) is a lethal gynecologic malignancy, with modest responses to CPI. Engagement of additional immune arms, such as NK cells, may be of value. We focused on Siglec-7 as a surface antigen for engaging this population. Human antibodies against Siglec-7 were developed and characterized. Coculture of OC cells with PBMCs/NKs and Siglec-7 binding antibodies showed NK-mediated killing of OC lines. Anti-Siglec-7 mAb (DB7.2) enhanced survival in OC-challenged mice. In addition, the combination of DB7.2 and anti-PD-1 demonstrated further improved OC killing in vitro. To use Siglec-7 engagement as an OC-specific strategy, we engineered an NK cell engager (NKCE) to simultaneously engage NK cells through Siglec-7, and OC targets through FSHR. The NKCE demonstrated robust in vitro killing of FSHR+ OC, controlled tumors, and improved survival in OC-challenged mice. These studies support additional investigation of the Siglec-7 targeting approaches as important tools for OC and other recalcitrant cancers.


Assuntos
Produtos Biológicos , Neoplasias Ovarianas , Feminino , Humanos , Camundongos , Animais , Produtos Biológicos/metabolismo , Células Matadoras Naturais , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/metabolismo , Antígenos CD/metabolismo , Lectinas Semelhantes a Imunoglobulina de Ligação ao Ácido Siálico/metabolismo
2.
Front Immunol ; 14: 1072810, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36911698

RESUMO

Cancer immunotherapy has demonstrated great promise with several checkpoint inhibitors being approved as the first-line therapy for some types of cancer, and new engineered cytokines such as Neo2/15 now being evaluated in many studies. In this work, we designed antibody-cytokine chimera (ACC) scaffolding cytokine mimetics on a full-length tumor-specific antibody. We characterized the pharmacokinetic (PK) and pharmacodynamic (PD) properties of first-generation ACC TA99-Neo2/15, which synergized with DLnano-vaccines to suppress in vivo melanoma proliferation and induced significant systemic cytokine activation. A novel second-generation ACC TA99-HL2-KOA1, with retained IL-2Rß/γ binding and attenuated but preserved IL-2Rα binding, induced lower systemic cytokine activation with non-inferior protection in murine tumor studies. Transcriptomic analyses demonstrated an upregulation of Type I interferon responsive genes, particularly ISG15, in dendritic cells, macrophages and monocytes following TA99-HL2-KOA1 treatment. Characterization of additional ACCs in combination with cancer vaccines will likely be an important area of research for treating melanoma and other types of cancer.


Assuntos
Melanoma , Nanopartículas , Vacinas de DNA , Camundongos , Animais , Citocinas , Anticorpos , DNA
3.
Mol Ther Oncolytics ; 28: 249-263, 2023 Mar 16.
Artigo em Inglês | MEDLINE | ID: mdl-36915911

RESUMO

Glioblastoma multiforme (GBM) is among the most difficult cancers to treat with a 5-year survival rate less than 5%. An immunotherapeutic vaccine approach targeting GBM-specific antigen, EGFRvIII, previously demonstrated important clinical impact. However, immune escape variants were reported in the trial, suggesting that multivalent approaches targeting GBM-associated antigens may be of importance. Here we focused on multivalent in vivo delivery of synthetic DNA-encoded bispecific T cell engagers (DBTEs) targeting two GBM-associated antigens, EGFRvIII and HER2. We designed and optimized an EGFRvIII-DBTE that induced T cell-mediated cytotoxicity against EGFRvIII-expressing tumor cells. In vivo delivery in a single administration of EGFRvIII-DBTE resulted in durable expression over several months in NSG mice and potent tumor control and clearance in both peripheral and orthotopic animal models of GBM. Next, we combined delivery of EGFRvIII-DBTEs with an HER2-targeting DBTE to treat heterogeneous GBM tumors. In vivo delivery of dual DBTEs targeting these two GBM-associated antigens exhibited enhanced tumor control and clearance in a heterogeneous orthotopic GBM challenge, while treatment with single-target DBTE ultimately allowed for tumor escape. These studies support that combined delivery of DBTEs, targeting both EGFRvIII and HER2, can potentially improve outcomes of GBM immunotherapy, and such multivalent approaches deserve additional study.

4.
JCI Insight ; 7(22)2022 11 22.
Artigo em Inglês | MEDLINE | ID: mdl-36509287

RESUMO

Despite advances in ovarian cancer (OC) therapy, recurrent OC remains a poor-prognosis disease. Because of the close interaction between OC cells and the tumor microenvironment (TME), it is important to develop strategies that target tumor cells and engage components of the TME. A major obstacle in the development of OC therapies is the identification of targets with expression limited to tumor surface to avoid off-target interactions. The follicle-stimulating hormone receptor (FSHR) has selective expression on ovarian granulosa cells and is expressed on 50%-70% of serous OCs. We generated mAbs targeting the external domain of FSHR using in vivo-expressed FSHR vector. By high-throughput flow analysis, we identified multiple clones and downselected D2AP11, a potent FSHR surface-targeted mAb. D2AP11 identifies important OC cell lines derived from tumors with different mutations, including BRCA1/2, and lines resistant to a wide range of therapies. We used D2AP11 to develop a bispecific T cell engager. In vitro addition of PBMCs and T cells to D2AP11-TCE induced specific and potent killing of different genetic and immune escape OC lines, with EC50s in the ng/ml range, and attenuated tumor burden in OC-challenged mouse models. These studies demonstrate the potential utility of biologics targeting FSHR for OC and perhaps other FSHR-positive cancers.


Assuntos
Neoplasias Ovarianas , Receptores do FSH , Humanos , Animais , Camundongos , Feminino , Receptores do FSH/genética , Receptores do FSH/metabolismo , Recidiva Local de Neoplasia , Imunoterapia , Neoplasias Ovarianas/genética , Neoplasias Ovarianas/terapia , Neoplasias Ovarianas/patologia , Anticorpos Monoclonais/uso terapêutico , Imunidade Adaptativa , Microambiente Tumoral
5.
Mol Ther Oncolytics ; 24: 218-229, 2022 Mar 17.
Artigo em Inglês | MEDLINE | ID: mdl-35071745

RESUMO

Latent Epstein-Barr virus (EBV) infection is associated with several types of cancer. Several clinical studies have targeted EBV antigens as immune therapeutic targets with limited efficacy of EBV malignancies, suggesting that additional targets might be important. BamHI-A rightward frame 1 (BARF1) is an EBV antigen that is highly expressed in EBV+ nasopharyngeal carcinoma (NPC) and EBV-associated gastric carcinoma (EBVaGC). BARF1 antigen can transform human epithelial cells in vivo. BARF1-specific antibodies and cytotoxic T cells were detected in some EBV+ NPC patients. However, BARF1 has not been evaluated as an antigen in the context of therapeutic immunization. Its possible importance in this context is unclear. Here, we developed a synthetic-DNA-based expression cassette as immunotherapy targeting BARF1 (pBARF1). Immunization with pBARF1 induced potent antigen-specific humoral and T cell responses in vivo. Immunization with pBARF1 plasmid impacted tumor progression through the induction of CD8+ T cells in novel BARF1+ carcinoma models. Using an in vivo imaging system, we observed that pBARF1-immunized animals rapidly cleared cancer cells. We demonstrated that pBARF1 can induce antigen-specific immune responses that can impact cancer progression. Further study of this immune target is likely important as part of therapeutic approaches for EBV+ malignancies.

6.
Cell Rep ; 38(5): 110318, 2022 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-35090597

RESUMO

Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) vaccines may target epitopes that reduce durability or increase the potential for escape from vaccine-induced immunity. Using synthetic vaccinology, we have developed rationally immune-focused SARS-CoV-2 Spike-based vaccines. Glycans can be employed to alter antibody responses to infection and vaccines. Utilizing computational modeling and in vitro screening, we have incorporated glycans into the receptor-binding domain (RBD) and assessed antigenic profiles. We demonstrate that glycan-coated RBD immunogens elicit stronger neutralizing antibodies and have engineered seven multivalent configurations. Advanced DNA delivery of engineered nanoparticle vaccines rapidly elicits potent neutralizing antibodies in guinea pigs, hamsters, and multiple mouse models, including human ACE2 and human antibody repertoire transgenics. RBD nanoparticles induce high levels of cross-neutralizing antibodies against variants of concern with durable titers beyond 6 months. Single, low-dose immunization protects against a lethal SARS-CoV-2 challenge. Single-dose coronavirus vaccines via DNA-launched nanoparticles provide a platform for rapid clinical translation of potent and durable coronavirus vaccines.


Assuntos
Vacinas contra COVID-19/administração & dosagem , Vacinas contra COVID-19/imunologia , COVID-19/prevenção & controle , Nanopartículas/administração & dosagem , SARS-CoV-2/imunologia , Animais , Anticorpos Neutralizantes/imunologia , Sítios de Ligação , Vacinas contra COVID-19/química , Vacinas contra COVID-19/genética , Cricetinae , Epitopos , Cobaias , Imunogenicidade da Vacina , Camundongos , Nanopartículas/química , Vacinas Baseadas em Ácido Nucleico/administração & dosagem , Vacinas Baseadas em Ácido Nucleico/química , Vacinas Baseadas em Ácido Nucleico/genética , Vacinas Baseadas em Ácido Nucleico/imunologia , Polissacarídeos/química , Polissacarídeos/genética , Polissacarídeos/imunologia , SARS-CoV-2/química , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/química , Glicoproteína da Espícula de Coronavírus/genética , Glicoproteína da Espícula de Coronavírus/imunologia , Potência de Vacina
7.
iScience ; 24(7): 102699, 2021 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-34124612

RESUMO

More than 100 million people have been infected with severe acute respiratory syndrome coronavirus-2 (SARS-CoV-2). Common laboratory mice are not susceptible to wild-type SARS-CoV-2 infection, challenging the development and testing of effective interventions. Here, we describe the development and testing of a mouse model for SARS-CoV-2 infection based on transduction of the respiratory tract of laboratory mice with an adeno-associated virus vector (AAV6) expressing human ACE-2 (AAV6.2FF-hACE2). We validated this model using a previously described synthetic DNA vaccine plasmid, INO-4800 (pS). Intranasal instillation of AAV6.2FF-hACE2 resulted in robust hACE2 expression in the respiratory tract. pS induced robust cellular and humoral responses. Vaccinated animals were challenged with 105 TCID50 SARS-CoV-2 (hCoV-19/Canada/ON-VIDO-01/2020) and euthanized four days post-challenge to assess viral load. One immunization resulted in 50% protection and two immunizations were completely protective. Overall, the AAV6.2FF-hACE2 mouse transduction model represents an easily accessible, genetically diverse mouse model for wild-type SARS-CoV-2 infection and preclinical evaluation of potential interventions.

8.
Nucleic Acid Ther ; 30(6): 379-391, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-32907467

RESUMO

Hyperammonemia is a dangerous life-threatening metabolic complication characterized by markedly elevated ammonia levels that can lead to irreversible brain damage if not carefully monitored. Current pharmacological treatment strategies available for hyperammonemia patients are suboptimal and associated with major side effects. In this study, we focus on developing and evaluating the in vivo delivery of novel DNA-encoded glutamine synthetase (GS) enzymes for the treatment of hyperammonemia. Direct in vivo delivered DNA-encoded GS enzyme was evaluated in ammonium acetate-induced hyperammonemia and thioacetamide-induced acute liver injury (ALI) models in C57BL/6 mice. In ammonium acetate-induced hyperammonemia model, we achieved a 30.5% decrease in blood ammonia levels 15 min postadministration of ammonium acetate, with DNA-encoded GS-treated group. Significant increase in survival was observed in ALI model with the treated mice. A comparison of the secreted versus intracellular DNA-encoded GS enzyme demonstrated similar increases in survival in the ALI model, with 40% mortality in the secreted enzymes and 30% mortality in the intracellular enzymes, as compared with 90% mortality in the control group. Direct in vivo delivery of DNA-encoded GS demonstrated important ammonia-lowering potential. These results provide the initial steps toward development of delivered DNA as a potential new approach to ammonia-lowering therapeutics.


Assuntos
DNA/farmacologia , Glutamato-Amônia Ligase/genética , Hiperamonemia/tratamento farmacológico , Fígado/efeitos dos fármacos , Amônia/metabolismo , Animais , Modelos Animais de Doenças , Glutamato-Amônia Ligase/farmacologia , Glutamina/metabolismo , Humanos , Hiperamonemia/metabolismo , Fígado/metabolismo , Camundongos
9.
Mol Ther Methods Clin Dev ; 18: 652-663, 2020 Sep 11.
Artigo em Inglês | MEDLINE | ID: mdl-32802913

RESUMO

Arginase is a complex and unique enzyme that plays diverse roles in health and disease. By metabolizing arginine, it can shape the outcome of innate and adaptive immune responses. The immunomodulatory capabilities of arginase could potentially be applied for local immunosuppression or induction of immune tolerance. With the use of an enhanced DNA delivery approach, we designed and studied a DNA-encoded secretable arginase enzyme as a tool for immune modulation and evaluated its immunomodulatory function in vivo. Strong immunosuppression of cluster of differentiation 4 (CD4) and CD8 T cells, as well as macrophages and dendritic cells, was observed in vitro in the presence of an arginase-rich supernatant. To further evaluate the efficacy of DNA-encoded arginase on in vivo immunosuppression against an antigen, a cancer antigen vaccine model was used in the presence or absence of DNA-encoded arginase. Significant in vivo immunosuppression was observed in the presence of DNA-encoded arginase. The efficacy of this DNA-encoded arginase delivery was examined in a local, imiquimod-induced, psoriasis-like, skin-inflammation model. Pretreatment of animals with the synthetic DNA-encoded arginase led to significant decreases in skin acanthosis, proinflammatory cytokines, and costimulatory molecules in extracted macrophages and dendritic cells. These results draw attention to the potential of direct in vivo-delivered arginase to function as an immunomodulatory agent for treatment of local inflammation or autoimmune diseases.

10.
Nat Commun ; 11(1): 2601, 2020 05 20.
Artigo em Inglês | MEDLINE | ID: mdl-32433465

RESUMO

The coronavirus family member, SARS-CoV-2 has been identified as the causal agent for the pandemic viral pneumonia disease, COVID-19. At this time, no vaccine is available to control further dissemination of the disease. We have previously engineered a synthetic DNA vaccine targeting the MERS coronavirus Spike (S) protein, the major surface antigen of coronaviruses, which is currently in clinical study. Here we build on this prior experience to generate a synthetic DNA-based vaccine candidate targeting SARS-CoV-2 S protein. The engineered construct, INO-4800, results in robust expression of the S protein in vitro. Following immunization of mice and guinea pigs with INO-4800 we measure antigen-specific T cell responses, functional antibodies which neutralize the SARS-CoV-2 infection and block Spike protein binding to the ACE2 receptor, and biodistribution of SARS-CoV-2 targeting antibodies to the lungs. This preliminary dataset identifies INO-4800 as a potential COVID-19 vaccine candidate, supporting further translational study.


Assuntos
Antígenos Virais/imunologia , Glicoproteína da Espícula de Coronavírus/imunologia , Vacinas de DNA/imunologia , Vacinas Virais/imunologia , Enzima de Conversão de Angiotensina 2 , Animais , Anticorpos Neutralizantes/imunologia , Antígenos Virais/química , Vacinas contra COVID-19 , Infecções por Coronavirus/imunologia , Infecções por Coronavirus/prevenção & controle , Mapeamento de Epitopos , Cobaias , Imunidade Humoral , Imunoglobulina G/imunologia , Pulmão/imunologia , Camundongos , Camundongos Endogâmicos BALB C , Coronavírus da Síndrome Respiratória do Oriente Médio , Modelos Animais , Peptidil Dipeptidase A/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Vacinas Virais/química
11.
Adv Sci (Weinh) ; 7(8): 1902802, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328416

RESUMO

Nanotechnologies are considered to be of growing importance to the vaccine field. Through decoration of immunogens on multivalent nanoparticles, designed nanovaccines can elicit improved humoral immunity. However, significant practical and monetary challenges in large-scale production of nanovaccines have impeded their widespread clinical translation. Here, an alternative approach is illustrated integrating computational protein modeling and adaptive electroporation-mediated synthetic DNA delivery, thus enabling direct in vivo production of nanovaccines. DNA-launched nanoparticles are demonstrated displaying an HIV immunogen spontaneously self-assembled in vivo. DNA-launched nanovaccines induce stronger humoral responses than their monomeric counterparts in both mice and guinea pigs, and uniquely elicit CD8+ effector T-cell immunity as compared to recombinant protein nanovaccines. Improvements in vaccine responses recapitulate when DNA-launched nanovaccines with alternative scaffolds and decorated antigen are designed and evaluated. Finally, evaluation of functional immune responses induced by DLnanovaccines demonstrates that, in comparison to control mice or mice immunized with DNA-encoded hemagglutinin monomer, mice immunized with a DNA-launched hemagglutinin nanoparticle vaccine fully survive a lethal influenza challenge, and have substantially lower viral load, weight loss, and influenza-induced lung pathology. Additional study of these next-generation in vivo-produced nanovaccines may offer advantages for immunization against multiple disease targets.

12.
Front Med Technol ; 2: 571030, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-35047878

RESUMO

DNA vaccines are considered as a third-generation vaccination approach in which antigenic materials are encoded as DNA plasmids for direct in vivo production to elicit adaptive immunity. As compared to other platforms, DNA vaccination is considered to have a strong safety profile, as DNA plasmids neither replicate nor elicit vector-directed immune responses in hosts. While earlier work found the immune responses induced by DNA vaccines to be sub-optimal in larger mammals and humans, recent developments in key synthetic DNA and electroporation delivery technologies have now allowed DNA vaccines to elicit significantly more potent and consistent responses in several clinical studies. This paper will review findings from the recent clinical and preclinical studies on DNA vaccines targeting emerging infectious diseases (EID) including COVID-19 caused by the SARS-CoV-2 virus, and the technological advancements pivotal to the improved responses-including the use of the advanced delivery technology, DNA-encoded cytokine/mucosal adjuvants, and innovative concepts in immunogen design. With continuous advancement over the past three decades, the DNA approach is now poised to develop vaccines against COVID-19, as well as other EIDs.

13.
JCI Insight ; 4(8)2019 04 18.
Artigo em Inglês | MEDLINE | ID: mdl-30996140

RESUMO

Specific antibody therapy, including mAbs and bispecific T cell engagers (BiTEs), are important new tools for cancer immunotherapy. However, these approaches are slow to develop and may be limited in their production, thus restricting the patients who can access these treatments. BiTEs exhibit a particularly short half-life and difficult production. The development of an approach allowing simplified development, delivery, and in vivo production would be an important advance. Here we describe the development of a designed synthetic DNA plasmid, which we optimized to permit high expression of an anti-HER2 antibody (HER2dMAb) and delivered it into animals through adaptive electroporation. HER2dMAb was efficiently expressed in vitro and in vivo, reaching levels of 50 µg/ml in mouse sera. Mechanistically, HER2dMAb blocked HER2 signaling and induced antibody-dependent cytotoxicity. HER2dMAb delayed tumor progression for HER2-expressing ovarian and breast cancer models. We next used the HER2dMAb single-chain variable fragment portion to engineer a DNA-encoded BiTE (DBiTE). This HER2DBiTE was expressed in vivo for approximately 4 months after a single administration. The HER2DBiTE was highly cytolytic and delayed cancer progression in mice. These studies illustrate an approach to generate DBiTEs in vivo, which represent promising immunotherapies for HER2+ tumors, including ovarian and potentially other cancers.


Assuntos
Anticorpos Biespecíficos/administração & dosagem , Anticorpos Monoclonais/administração & dosagem , Antineoplásicos Imunológicos/administração & dosagem , Sistemas de Liberação de Medicamentos/métodos , Neoplasias/tratamento farmacológico , Animais , Anticorpos Biespecíficos/genética , Anticorpos Monoclonais/genética , Linhagem Celular Tumoral , Eletroporação/métodos , Feminino , Humanos , Masculino , Camundongos , Neoplasias/imunologia , Neoplasias/patologia , Plasmídeos/administração & dosagem , Plasmídeos/genética , Receptor ErbB-2/antagonistas & inibidores , Receptor ErbB-2/imunologia , Receptor ErbB-2/metabolismo , Linfócitos T/efeitos dos fármacos , Linfócitos T/imunologia , Linfócitos T/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto
15.
IEEE Trans Vis Comput Graph ; 22(1): 250-9, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26529705

RESUMO

Although there has been a great deal of interest in analyzing customer opinions and breaking news in microblogs, progress has been hampered by the lack of an effective mechanism to discover and retrieve data of interest from microblogs. To address this problem, we have developed an uncertainty-aware visual analytics approach to retrieve salient posts, users, and hashtags. We extend an existing ranking technique to compute a multifaceted retrieval result: the mutual reinforcement rank of a graph node, the uncertainty of each rank, and the propagation of uncertainty among different graph nodes. To illustrate the three facets, we have also designed a composite visualization with three visual components: a graph visualization, an uncertainty glyph, and a flow map. The graph visualization with glyphs, the flow map, and the uncertainty analysis together enable analysts to effectively find the most uncertain results and interactively refine them. We have applied our approach to several Twitter datasets. Qualitative evaluation and two real-world case studies demonstrate the promise of our approach for retrieving high-quality microblog data.


Assuntos
Blogging/classificação , Gráficos por Computador , Armazenamento e Recuperação da Informação/métodos , Modelos Estatísticos , Humanos , Internet , Modelos Teóricos , Método de Monte Carlo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA