Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
1.
Nat Metab ; 6(2): 290-303, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38316982

RESUMO

Obesity is a major public health crisis. Multi-specific peptides have emerged as promising therapeutic strategies for clinical weight loss. Glucagon-like peptide-1 (GLP-1) and glucose-dependent insulinotropic polypeptide (GIP) are endogenous incretins that regulate weight through their receptors (R). AMG 133 (maridebart cafraglutide) is a bispecific molecule engineered by conjugating a fully human monoclonal anti-human GIPR antagonist antibody to two GLP-1 analogue agonist peptides using amino acid linkers. Here, we confirm the GIPR antagonist and GLP-1R agonist activities in cell-based systems and report the ability of AMG 133 to reduce body weight and improve metabolic markers in male obese mice and cynomolgus monkeys. In a phase 1, randomized, double-blind, placebo-controlled clinical study in participants with obesity ( NCT04478708 ), AMG 133 had an acceptable safety and tolerability profile along with pronounced dose-dependent weight loss. In the multiple ascending dose cohorts, weight loss was maintained for up to 150 days after the last dose. These findings support continued clinical evaluation of AMG 133.


Assuntos
Peptídeo 1 Semelhante ao Glucagon , Agonistas do Receptor do Peptídeo 1 Semelhante ao Glucagon , Camundongos , Animais , Humanos , Masculino , Peptídeo 1 Semelhante ao Glucagon/uso terapêutico , Redução de Peso , Peptídeos/uso terapêutico , Obesidade/tratamento farmacológico , Obesidade/metabolismo
2.
Commun Biol ; 6(1): 1117, 2023 11 03.
Artigo em Inglês | MEDLINE | ID: mdl-37923804

RESUMO

Identifying circulating proteins associated with cognitive function may point to biomarkers and molecular process of cognitive impairment. Few studies have investigated the association between circulating proteins and cognitive function. We identify 246 protein measures quantified by the SomaScan assay as associated with cognitive function (p < 4.9E-5, n up to 7289). Of these, 45 were replicated using SomaScan data, and three were replicated using Olink data at Bonferroni-corrected significance. Enrichment analysis linked the proteins associated with general cognitive function to cell signaling pathways and synapse architecture. Mendelian randomization analysis implicated higher levels of NECTIN2, a protein mediating viral entry into neuronal cells, with higher Alzheimer's disease (AD) risk (p = 2.5E-26). Levels of 14 other protein measures were implicated as consequences of AD susceptibility (p < 2.0E-4). Proteins implicated as causes or consequences of AD susceptibility may provide new insight into the potential relationship between immunity and AD susceptibility as well as potential therapeutic targets.


Assuntos
Doença de Alzheimer , Disfunção Cognitiva , Pessoa de Meia-Idade , Humanos , Idoso , Cognição , Neurônios , Biomarcadores
3.
Circulation ; 138(22): 2469-2481, 2018 11 27.
Artigo em Inglês | MEDLINE | ID: mdl-30571344

RESUMO

BACKGROUND: Proteomic approaches allow measurement of thousands of proteins in a single specimen, which can accelerate biomarker discovery. However, applying these technologies to massive biobanks is not currently feasible because of the practical barriers and costs of implementing such assays at scale. To overcome these challenges, we used a "virtual proteomic" approach, linking genetically predicted protein levels to clinical diagnoses in >40 000 individuals. METHODS: We used genome-wide association data from the Framingham Heart Study (n=759) to construct genetic predictors for 1129 plasma protein levels. We validated the genetic predictors for 268 proteins and used them to compute predicted protein levels in 41 288 genotyped individuals in the Electronic Medical Records and Genomics (eMERGE) cohort. We tested associations for each predicted protein with 1128 clinical phenotypes. Lead associations were validated with directly measured protein levels and either low-density lipoprotein cholesterol or subclinical atherosclerosis in the MDCS (Malmö Diet and Cancer Study; n=651). RESULTS: In the virtual proteomic analysis in eMERGE, 55 proteins were associated with 89 distinct diagnoses at a false discovery rate q<0.1. Among these, 13 associations involved lipid (n=7) or atherosclerosis (n=6) phenotypes. We tested each association for validation in MDCS using directly measured protein levels. At Bonferroni-adjusted significance thresholds, levels of apolipoprotein E isoforms were associated with hyperlipidemia, and circulating C-type lectin domain family 1 member B and platelet-derived growth factor receptor-ß predicted subclinical atherosclerosis. Odds ratios for carotid atherosclerosis were 1.31 (95% CI, 1.08-1.58; P=0.006) per 1-SD increment in C-type lectin domain family 1 member B and 0.79 (0.66-0.94; P=0.008) per 1-SD increment in platelet-derived growth factor receptor-ß. CONCLUSIONS: We demonstrate a biomarker discovery paradigm to identify candidate biomarkers of cardiovascular and other diseases.


Assuntos
Biomarcadores/sangue , Doenças das Artérias Carótidas/diagnóstico , Estudo de Associação Genômica Ampla , Proteoma/análise , Adulto , Idoso , Idoso de 80 Anos ou mais , Doenças das Artérias Carótidas/genética , Feminino , Genótipo , Humanos , Lectinas Tipo C/análise , Masculino , Pessoa de Meia-Idade , Razão de Chances , Fenótipo , Polimorfismo de Nucleotídeo Único , Proteômica , Receptor beta de Fator de Crescimento Derivado de Plaquetas/sangue
4.
Circulation ; 137(11): 1158-1172, 2018 03 13.
Artigo em Inglês | MEDLINE | ID: mdl-29258991

RESUMO

BACKGROUND: We recently identified 156 proteins in human plasma that were each associated with the net Framingham Cardiovascular Disease Risk Score using an aptamer-based proteomic platform in Framingham Heart Study Offspring participants. Here we hypothesized that performing genome-wide association studies and exome array analyses on the levels of each of these 156 proteins might identify genetic determinants of risk-associated circulating factors and provide insights into early cardiovascular pathophysiology. METHODS: We studied the association of genetic variants with the plasma levels of each of the 156 Framingham Cardiovascular Disease Risk Score-associated proteins using linear mixed-effects models in 2 population-based cohorts. We performed discovery analyses on plasma samples from 759 participants of the Framingham Heart Study Offspring cohort, an observational study of the offspring of the original Framingham Heart Study and their spouses, and validated these findings in plasma samples from 1421 participants of the MDCS (Malmö Diet and Cancer Study). To evaluate the utility of this strategy in identifying new biological pathways relevant to cardiovascular disease pathophysiology, we performed studies in a cell-model system to experimentally validate the functional significance of an especially novel genetic association with circulating apolipoprotein E levels. RESULTS: We identified 120 locus-protein associations in genome-wide analyses and 41 associations in exome array analyses, the majority of which have not been described previously. These loci explained up to 66% of interindividual plasma protein-level variation and, on average, accounted for 3 times the amount of variation explained by common clinical factors, such as age, sex, and diabetes mellitus status. We described overlap among many of these loci and cardiovascular disease genetic risk variants. Finally, we experimentally validated a novel association between circulating apolipoprotein E levels and the transcription factor phosphatase 1G. Knockdown of phosphatase 1G in a human liver cell model resulted in decreased apolipoprotein E transcription and apolipoprotein E protein levels in cultured supernatants. CONCLUSIONS: We identified dozens of novel genetic determinants of proteins associated with the Framingham Cardiovascular Disease Risk Score and experimentally validated a new role for phosphatase 1G in lipoprotein biology. Further, genome-wide and exome array data for each protein have been made publicly available as a resource for cardiovascular disease research.


Assuntos
Proteínas Sanguíneas/genética , Doenças Cardiovasculares/genética , Variação Genética , Idoso , Apolipoproteínas E/genética , Apolipoproteínas E/metabolismo , Proteínas Sanguíneas/metabolismo , Doenças Cardiovasculares/sangue , Doenças Cardiovasculares/diagnóstico , Bases de Dados Genéticas , Feminino , Perfilação da Expressão Gênica , Predisposição Genética para Doença , Estudo de Associação Genômica Ampla , Células Hep G2 , Hereditariedade , Humanos , Masculino , Análise da Randomização Mendeliana , Pessoa de Meia-Idade , Fenótipo , Proteína Fosfatase 2C/genética , Proteína Fosfatase 2C/metabolismo , Locos de Características Quantitativas , Fatores de Risco
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA