Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 24
Filtrar
1.
Int J Biol Macromol ; 269(Pt 1): 131914, 2024 May 03.
Artigo em Inglês | MEDLINE | ID: mdl-38703527

RESUMO

The healing of critical-sized bone defects is a major challenge in the field of bone tissue engineering. Gelatin-related hydrogels have emerged as a potential solution due to their desirable properties. However, their limited osteogenic, mechanical, and reactive oxygen species (ROS)-scavenging capabilities have hindered their clinical application. To overcome this issue, we developed a biofunctional gelatin-Mxene nanocomposite hydrogel. Firstly, we prepared two-dimensional (2D) Ti3C2 MXene nanosheets using a layer delamination method. Secondly, these nanosheets were incorporated into a transglutaminase (TG) enzyme-containing gallic acid-imbedded gelatin (GGA) pre-gel solution to create an injectable GGA-MXene (GM) nanocomposite hydrogel. The GM hydrogels exhibited superior compressive strength (44-75.6 kPa) and modulus (24-44.5 kPa) compared to the GGA hydrogels. Additionally, the GM hydrogel demonstrated the ability to scavenge reactive oxygen species (OH- and DPPH radicals), protecting MC3T3-E1 cells from oxidative stress. GM hydrogels were non-toxic to MC3T3-E1 cells, increased alkaline phosphatase secretion, calcium nodule formation, and upregulated osteogenic gene expressions (ALP, OCN, and RUNX2). The GM400 hydrogel was implanted in critical-sized calvarial defects in rats. Remarkably, it exhibited significant potential for promoting new bone formation. These findings indicated that GM hydrogel could be a viable candidate for future clinical applications in the treatment of critical-sized bone defects.

2.
J Exp Clin Cancer Res ; 43(1): 101, 2024 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-38566204

RESUMO

BACKGROUND: Regulatory B cells (Bregs), a specialized subset of B cells that modulate immune responses and maintain immune tolerance in malignant tumors, have not been extensively investigated in the context of bladder cancer (BLCA). This study aims to elucidate the roles of Bregs and Breg-related genes in BLCA. METHODS: We assessed Breg infiltration levels in 34 pairs of BLCA and corresponding paracancerous tissues using immunohistochemical staining. We conducted transwell and wound healing assays to evaluate the impact of Bregs on the malignant phenotype of SW780 and T24 cells. Breg-related genes were identified through gene sets and transcriptional analysis. The TCGA-BLCA cohort served as the training set, while the IMvigor210 and 5 GEO cohorts were used as external validation sets. We employed LASSO regression and random forest for feature selection and developed a risk signature using Cox regression. Primary validation of the risk signature was performed through immunohistochemical staining and RT-qPCR experiments using the 34 local BLCA samples. Additionally, we employed transfection assays and flow cytometry to investigate Breg expansion ability and immunosuppressive functions. RESULTS: Breg levels in BLCA tissues were significantly elevated compared to paracancerous tissues (P < 0.05) and positively correlated with tumor malignancy (P < 0.05). Co-incubation of SW780 and T24 cells with Bregs resulted in enhanced invasion and migration abilities (all P < 0.05). We identified 27 Breg-related genes, including CD96, OAS1, and CSH1, which were integrated into the risk signature. This signature demonstrated robust prognostic classification across the 6 cohorts (pooled HR = 2.25, 95% CI = 1.52-3.33). Moreover, the signature exhibited positive associations with advanced tumor stage (P < 0.001) and Breg infiltration ratios (P < 0.05) in the local samples. Furthermore, the signature successfully predicted immunotherapeutic sensitivity in three cohorts (all P < 0.05). Knockdown of CSH1 in B cells increased Breg phenotype and enhanced suppressive ability against CD8 + T cells (all P < 0.05). CONCLUSIONS: Bregs play a pro-tumor role in the development of BLCA. The Breg-related gene signature established in this study holds great potential as a valuable tool for evaluating prognosis and predicting immunotherapeutic response in BLCA patients.


Assuntos
Linfócitos B Reguladores , Neoplasias da Bexiga Urinária , Humanos , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Linfócitos T CD8-Positivos , Citometria de Fluxo , Imunoterapia , Prognóstico
3.
J Mater Chem B ; 12(14): 3543-3555, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38529560

RESUMO

Intrauterine adhesions (IUAs) are common sequelae of cervical mucosa damage caused by uterine curettage. Establishing an anti-adhesion barrier between the damaged endometrium with a sustained-release drug capability and hence promoting endogenous regeneration of the endometrium is an available treatment for IUA. However, current therapy lacks long-term intracavitary residence, drug-delivery permeability, and tissue anti-adhesion to the endometrium. Here, we report the design of a Janus microneedle patch consisting of two layers: an adhesive inner layer with an exosomes-loaded microneedle, which endows the patch with a tissue adhesive capability as well as transdermal drug-delivery capability; and an anti-adhesion outer layer, which prevents the intrauterine membrane from postoperative adhesion. This Janus adhesive microneedle patch firmly adhered to uterine tissue, and sustainedly released ∼80% of the total loaded exosomes in 7 days, hence promoting the expression of vascular- and endothelial-related cell signals. Furthermore, the anti-adhesive layer of the microneedle patch exhibited low cell and protein adhesion performance. In rats, the microneedle patch successfully prevented uterine adhesions, improved endometrial angiogenesis, proliferation, and hormone response levels. This study provides a stable anti-adhesion barrier as well as efficient drug-release capability treatment for intrauterine adhesion treatment.


Assuntos
Exossomos , Doenças Uterinas , Humanos , Feminino , Ratos , Animais , Adesivos/farmacologia , Adesivos/metabolismo , Doenças Uterinas/metabolismo , Doenças Uterinas/terapia , Endométrio/metabolismo , Proteínas/metabolismo
4.
Cancer Sci ; 115(5): 1417-1432, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38422408

RESUMO

Platelets and M2 macrophages both play crucial roles in tumorigenesis, but their relationship and the prognosis value of the relative genes in bladder cancer (BLCA) remain obscure. In the present study, we found that platelets stimulated by BLCA cell lines could promote M2 macrophage polarization, and platelets were significantly associated with the infiltration of M2 macrophages in BLCA samples. Through the bioinformatic analyses, A2M, TGFB3, and MYLK, which were associated with platelets and M2 macrophages, were identified and verified in vitro and then included in the predictive model. A platelet and M2 macrophage-related gene signature was constructed to evaluate the prognosis and immunotherapeutic sensitivity, helping to guide personalized treatment and to disclose the underlying mechanisms.


Assuntos
Plaquetas , Imunoterapia , Macrófagos , Neoplasias da Bexiga Urinária , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/terapia , Neoplasias da Bexiga Urinária/imunologia , Neoplasias da Bexiga Urinária/patologia , Humanos , Prognóstico , Macrófagos/imunologia , Macrófagos/metabolismo , Plaquetas/metabolismo , Linhagem Celular Tumoral , Imunoterapia/métodos , Masculino , Feminino , Regulação Neoplásica da Expressão Gênica , Biologia Computacional/métodos , Camundongos , Transcriptoma , Pessoa de Meia-Idade , Perfilação da Expressão Gênica/métodos
5.
Mol Cancer ; 23(1): 4, 2024 01 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184608

RESUMO

BACKGROUND: Renal cell carcinoma (RCC) is one of the most common malignant tumor worldwide. Metastasis is a leading case of cancer-related deaths of RCC. Circular RNAs (circRNAs), a class of noncoding RNAs, have emerged as important regulators in cancer metastasis. However, the functional effects and regulatory mechanisms of circRNAs on RCC metastasis remain largely unknown. METHODS: High-throughput RNA sequencing techniques were performed to analyze the expression profiles of circRNAs and mRNAs in highly and poorly invasive clear cell renal cell carcinoma (ccRCC) cell lines. Functional experiments were performed to unveil the regulatory role of circPPAP2B in the proliferation and metastatic capabilities of ccRCC cells. RNA pulldown, Mass spectrometry analysis, RNA methylation immunoprecipitation (MeRIP), RNA immunoprecipitation (RIP), co-immunoprecipitation (CoIP), next-generation RNA-sequencing and double luciferase experiments were employed to clarify the molecular mechanisms by which circPPAP2B promotes ccRCC metastasis. RESULTS: In this study, we describe a newly identified circular RNA called circPPAP2B, which is overexpressed in highly invasive ccRCC cells, as determined through advanced high-throughput RNA sequencing techniques. Furthermore, we observed elevated circPPAP2B in ccRCC tissues, particularly in metastatic ccRCC tissues, and found it to be associated with poor prognosis. Functional experiments unveiled that circPPAP2B actively stimulates the proliferation and metastatic capabilities of ccRCC cells. Mechanistically, circPPAP2B interacts with HNRNPC in a m6A-dependent manner to facilitate HNRNPC nuclear translocation. Subcellular relocalization was dependent upon nondegradable ubiquitination of HNRNPC and stabilization of an HNRNPC/Vimentin/Importin α7 ternary complex. Moreover, we found that circPPAP2B modulates the interaction between HNRNPC and splicing factors, PTBP1 and HNPNPK, and regulates pre-mRNA alternative splicing. Finally, our studies demonstrate that circPPAP2B functions as a miRNA sponge to directly bind to miR-182-5p and increase CYP1B1 expression in ccRCC. CONCLUSIONS: Collectively, our study provides comprehensive evidence that circPPAP2B promotes proliferation and metastasis of ccRCC via HNRNPC-dependent alternative splicing and miR-182-5p/CYP1B1 axis and highlights circPPAP2B as a potential therapeutic target for ccRCC intervention.


Assuntos
Carcinoma de Células Renais , Neoplasias Renais , MicroRNAs , Humanos , Carcinoma de Células Renais/genética , Processamento Alternativo , RNA Circular/genética , MicroRNAs/genética , Neoplasias Renais/genética , Ribonucleoproteínas Nucleares Heterogêneas , Proteína de Ligação a Regiões Ricas em Polipirimidinas , Citocromo P-450 CYP1B1 , Ribonucleoproteínas Nucleares Heterogêneas Grupo C/genética
6.
Cell Transplant ; 32: 9636897231193073, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37737125

RESUMO

Angiogenesis is strongly associated with ovarian hyperstimulation syndrome (OHSS) progression. Early growth response protein 1 (EGR1) plays an important role in angiogenesis. This study aimed to investigate the function and mechanism of EGR1 involved in OHSS progression. RNA-sequencing was used to identify differentially expressed genes. In vitro OHSS cell model was induced by treating KGN cells with human chorionic gonadotropin (hCG). In vivo OHSS model was established in mice. The expression levels of EGR1, SOX1, and VEGF were determined by Quantitative Real-Time polymerase chain reaction (qRT-PCR), Western blot, immunofluorescence staining, and immunochemistry assay. The content of VEGF in the culture medium of human granulosa-like tumor cell line (KGN) cells was accessed by the ELISA assay. The regulatory effect of EGR1 on SRY-box transcription factor 9 (SOX9) was addressed by luciferase reporter assay and chromatin immunoprecipitation. The ERG1 and SOX9 levels were significantly upregulated in granulosa cells from OHSS patients and there was a positive association between EGR1 and SOX9 expression. In the ovarian tissues of OHSS mice, the levels of EGR1 and SOX9 were also remarkedly increased. Treatment with hCG elevated the levels of vascular endothelial growth factor (VEGF), EGR1, and SOX9 in KGN cells. Silencing of EGR1 reversed the promoting effect of hCG on VEGF and SOX9 expression in KGN cells. EGR1 transcriptionally regulated SOX9 expression through binding to its promoter. In addition, administration of dopamine decreased hCG-induced VEGF in KGN cells and ameliorated the progression of OHSS in mice, which were companied with decreased EGR1 and SOX9 expression. EGR1 has a promoting effect on OHSS progression and dopamine protects against OHSS through suppression of EGR1/SOX9 cascade. Our findings may provide new targets for the treatment of OHSS.


Assuntos
Síndrome de Hiperestimulação Ovariana , Animais , Feminino , Humanos , Camundongos , Gonadotropina Coriônica/farmacologia , Gonadotropina Coriônica/genética , Gonadotropina Coriônica/metabolismo , Dopamina , Proteína 1 de Resposta de Crescimento Precoce/genética , Proteína 1 de Resposta de Crescimento Precoce/metabolismo , Síndrome de Hiperestimulação Ovariana/genética , Síndrome de Hiperestimulação Ovariana/induzido quimicamente , Síndrome de Hiperestimulação Ovariana/metabolismo , Fatores de Transcrição SOX9/genética , Fatores de Transcrição SOX9/metabolismo , Regulação para Cima , Fator A de Crescimento do Endotélio Vascular/genética , Fator A de Crescimento do Endotélio Vascular/metabolismo
7.
Infect Drug Resist ; 16: 6225-6235, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37732172

RESUMO

Background: Thrombocytopenia, characterized by a diminished platelet count, emerged as the most frequently reported coagulation dysfunction event according to the FDA Adverse Event Reporting System (FAERS) database. In recent years, numerous clinical studies have investigated the potential link between tigecycline usage and the occurrence of hypofibrinogenemia. However, a research gap remains in comprehensively examining the association between tigecycline and thrombocytopenia in real-world settings. Methods: This study was conducted to explore the incidence and clinical manifestations of tigecycline-associated thrombocytopenia. A retrospective case-control study of patients treated with tigecycline was conducted between January 2018 and June 2022. Results: In total, 373 patients were included in this study. Among these patients, 12.3% experienced thrombocytopenia. The onset of thrombocytopenia occurred within a range of 2 to 22 days after the initiation of tigecycline, with a median period (25-75th percentile) of 9 (6-11) days. Among the patients manifesting thrombocytopenia, 60.9% exhibited mild-to-moderate cases (grades 1-2) while 39.1% endured severe cases (grades 3-4). Multivariate analysis delineated several factors as independent risk factors for thrombocytopenia. Notably, advanced age (≥74 years) (p=0.028), risk of malnutrition (p<0.001), tigecycline therapy for ≥7 days (p=0.003), DBIL>8.1µmol/L (p<0.001)), BUN>8.1mmol/L (p=0.002) emerged as independent risk factors associated with thrombocytopenia. When comparing the control group to the thrombocytopenia group, 70.7% of patients in the control group exhibited 0-2 risk factors, while all patients in the thrombocytopenia group demonstrated risk factors. Specifically, 95.7% of patients in the thrombocytopenia group presented with three to five risk factors, with only 4.4% having 0-2 risk factors. Conclusion: Tigecycline administration is associated with thrombocytopenia. Healthcare professionals should exercise vigilance, particularly in cases of severe tigecycline-associated thrombocytopenia, and undertake routine monitoring of patients' platelet counts, especially for those who possess three or more risk factors.

8.
ACS Biomater Sci Eng ; 9(6): 3435-3444, 2023 06 12.
Artigo em Inglês | MEDLINE | ID: mdl-37200162

RESUMO

In this study, biomimetic porous magnesium alloy scaffolds were prepared to repair femoral bone defects in ovariectomized osteoporotic rats. The purpose of the study was to investigate the effect of biomimetic porous magnesium alloy scaffolds on repairing osteoporotic bone defects and possible mechanisms. The animal model of osteoporosis was established in female SD rats. Three months later, a bone defect of 3 mm in diameter and 3 mm in depth was created in the lateral condyle of the right femur. The rats were then randomly divided into two groups: an experimental group and a control group. Four weeks after surgery, gross specimens were observed and micro-CT scans were performed. The repair of osteoporotic femoral defects in rats was studied histologically using HE staining, Masson staining, and Goldner staining. The expression of Wnt5a, ß-catenin, and BMP-2 was measured between groups by immunohistochemical staining. The bone defect was repaired better after the application of biomimetic porous magnesium alloy scaffolds. Immunohistochemical results showed significantly higher expression of Wnt5a, ß-catenin, and BMP-2. To conclude, the biomimetic porous magnesium alloy scaffolds proposed in this paper might promote the repair of osteoporotic femoral bone defects in rats possibly through activating the Wnt/ß-catenin signaling pathway.


Assuntos
Magnésio , Osteoporose , Via de Sinalização Wnt , Animais , Feminino , Ratos , Ligas , beta Catenina/metabolismo , Biomimética , Porosidade , Ratos Sprague-Dawley , Via de Sinalização Wnt/efeitos dos fármacos
9.
Front Endocrinol (Lausanne) ; 14: 1164386, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37229455

RESUMO

Osteogenesis imperfecta (OI) is a hereditary skeletal dysplasia with an incidence of approximately 1:15,000 to 20,000. OI is usually caused by the mutation of COL1A1 and COL1A2, which would encode the α-chain of type I collagen. OI is clinically characterized by decreased bone mass, increased risk of bone fragility, blue sclerae, and dentinogenesis. Case presentation: A 29-year-old male patient was diagnosed with right tibial plateau fracture caused by slight violence. Physical examination revealed the following: height, 140 cm; weight, 70 kg; body mass index (BMI), 35.71 kg/m2; blue sclera and barrel chest were observed. X-ray examination showed left convex deformity of the thoracic vertebrae with reduced thoracic volume. Laboratory examinations revealed a decrease in both vitamin D and blood calcium levels. Bone mineral density (BMD) was lower than the normal range. After the preoperative preparation was completed, the open reduction and internal fixation of the right tibial plateau fracture were performed. Meanwhile, whole blood samples of this OI patient and the normal control were collected for RNA transcriptome sequencing. The RNA sequence analysis revealed that there were 513 differentially expressed genes (DEGs) between this OI patient and the normal control. KEGG-enriched signaling pathways were significantly enriched in extracellular matrix (ECM)-receptor interactions. Conclusion: In this case, DEGs between this OI patient and the normal control were identified by RNA transcriptome sequencing. Moreover, the possible pathogenesis of OI was also explored, which may provide new evidence for the treatment of OI.


Assuntos
Fraturas Ósseas , Osteogênese Imperfeita , Fraturas do Planalto Tibial , Masculino , Humanos , Adulto , Osteogênese Imperfeita/complicações , Osteogênese Imperfeita/genética , Osteogênese Imperfeita/epidemiologia , Mutação , Fraturas Ósseas/epidemiologia
10.
Front Genet ; 14: 1136240, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37065473

RESUMO

As a special pattern of programmed cell death, ferroptosis is reported to participate in several processes of tumor progression, including regulating proliferation, suppressing apoptotic pathways, increasing metastasis, and acquiring drug resistance. The marked features of ferroptosis are an abnormal intracellular iron metabolism and lipid peroxidation that are pluralistically modulated by ferroptosis-related molecules and signals, such as iron metabolism, lipid peroxidation, system Xc-, GPX4, ROS production, and Nrf2 signals. Non-coding RNAs (ncRNAs) are a type of functional RNA molecules that are not translated into a protein. Increasing studies demonstrate that ncRNAs have a diversity of regulatory roles in ferroptosis, thus influencing the progression of cancers. In this study, we review the fundamental mechanisms and regulation network of ncRNAs on ferroptosis in various tumors, aiming to provide a systematic understanding of recently emerging non-coding RNAs and ferroptosis.

11.
Front Genet ; 14: 1094793, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36891150

RESUMO

Background: Copper is an indispensable mineral element involved in many physiological metabolic processes. Cuproptosis is associated with a variety of cancer such as hepatocellular carcinoma (HCC). The objective of this study was to examine the relationships between the expression of cuproptosis-related genes (CRGs) and tumor characteristics, including prognosis and microenvironment of HCC. Methods: The differentially expressed genes (DEGs) between high and low CRGs expression groups in HCC samples were identified, and further were analyzed for functional enrichment analysis. Then, CRGs signature of HCC was constructed and analyzed utilizing LASSO and univariate and multivariate Cox regression analysis. Prognostic values of CRGs signature were evaluated by Kaplan-Meier analysis, independent prognostic analysis and nomograph. The expression of prognostic CRGs was verified by Real-time quantitative PCR (RT-qPCR) in HCC cell lines. In addition, the relationships between prognostic CRGs expression and the immune infiltration, tumor microenvironment, antitumor drugs response and m6A modifications were further explored using a series of algorithms in HCC. Finally, ceRNA regulatory network based on prognostic CRGs was constructed. Results: The DEGs between high and low CRG expression groups in HCC were mainly enriched in focal adhesion and extracellular matrix organization. Besides, we constructed a prognostic model that consists of CDKN2A, DLAT, DLST, GLS, and PDHA1 CRGs for predicting the survival likelihood of HCC patients. And the elevated expression of these five prognostic CRGs was substantially in HCC cell lines and associated with poor prognosis. Moreover, immune score and m6A gene expression were higher in the high CRG expression group of HCC patients. Furthermore, prognostic CRGs have higher mutation rates in HCC, and are significantly correlated with immune cell infiltration, tumor mutational burden, microsatellite instability, and anti-tumor drug sensitivity. Then, eight lncRNA-miRNA-mRNA regulatory axes that affected the progression of HCC were predicted. Conclusion: This study demonstrated that the CRGs signature could effectively evaluate prognosis, tumor immune microenvironment, immunotherapy response and predict lncRNA-miRNA-mRNA regulatory axes in HCC. These findings extend our knowledge of cuproptosis in HCC and may inform novel therapeutic strategies for HCC.

12.
Drug Resist Updat ; 68: 100938, 2023 05.
Artigo em Inglês | MEDLINE | ID: mdl-36774746

RESUMO

Bladder cancer is one of the most common malignancies in the world. Cisplatin is one of the most potent and widely used anticancer drugs and has been employed in several malignancies. Cisplatin-based combination chemotherapies have become important adjuvant therapies for bladder cancer patients. Cisplatin-based treatment often results in the development of chemoresistance, leading to therapeutic failure and limiting its application and effectiveness in bladder cancer. To develop improved and more effective cancer therapy, research has been conducted to elucidate the underlying mechanism of cisplatin resistance. Epigenetic modifications have been demonstrated involved in drug resistance to chemotherapy, and epigenetic biomarkers, such as urine tumor DNA methylation assay, have been applied in patients screening or monitoring. Here, we provide a systematic description of epigenetic mechanisms, including DNA methylation, noncoding RNA regulation, m6A modification and posttranslational modifications, related to cisplatin resistance in bladder cancer.


Assuntos
Antineoplásicos , Neoplasias da Bexiga Urinária , Humanos , Cisplatino/farmacologia , Cisplatino/uso terapêutico , Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias da Bexiga Urinária/tratamento farmacológico , Neoplasias da Bexiga Urinária/genética , Neoplasias da Bexiga Urinária/patologia , Epigênese Genética , Metilação , Linhagem Celular Tumoral , Antineoplásicos/farmacologia , Antineoplásicos/uso terapêutico
13.
Front Genet ; 14: 1101683, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36816047

RESUMO

Background: Increasing evidence indicates a crucial role for N7-methylguanosine (m7G) methylation modification in human disease development, particularly cancer, and aberrant m7G levels are closely associated with tumorigenesis and progression via regulation of the expression of multiple oncogenes and tumor suppressor genes. However, the role of m7G in sarcomas (SARC) has not been adequately evaluated. Materials and methods: Transcriptome and clinical data were gathered from the TCGA database for this study. Normal and SARC groups were compared for the expression of m7G-related genes (m7GRGs). The expression of m7GRGs was verified using real-time quantitative PCR (RT-qPCR) in SARC cell lines. Then, differentially expressed genes (DEGs) were identified between high and low m7GRGs expression groups in SARC samples, and GO enrichment and KEGG pathways were evaluated. Next, prognostic values of m7GRGs were evaluated by Cox regression analysis. Subsequently, a prognostic model was constructed using m7GRGs with good prognostic values by Lasso regression analysis. Besides, the relationships between prognostic m7GRGs and immune infiltration, clinical features, cuproptosis-related genes, and antitumor drugs were investigated in patients with SARC. Finally, a ceRNA regulatory network based on m7GRGs was constructed. Results: The expression of ten m7GRGs was higher in the SARC group than in the control group. DEGs across groups with high and low m7GRGs expression were enriched for adhesion sites and cGMP-PKG. Besides, we constructed a prognostic model that consists of EIF4A1, EIF4G3, NCBP1, and WDR4 m7GRGs for predicting the survival likelihood of sarcoma patients. And the elevated expression of these four prognostic m7GRGs was substantially associated with poor prognosis and elevated expression in SARC cell lines. Moreover, we discovered that these four m7GRGs expressions were negatively correlated with CD4+ T cell levels, dendritic cell level and tumor purity, and positively correlated with tumor mutational burden, microsatellite instability, drug sensitivity and cuproptosis-related genes in patients with sarcomas. Then, a triple regulatory network of mRNA, miRNA, and lncRNA was established. Conclusion: The current study identified EIF4A1, EIF4G3, NCBP1, and WDR4 as prognostic genes for SARC that are associated with m7G.These findings extend our knowledge of m7G methylation in SARC and may guide the development of innovative treatment options.

14.
Chin J Integr Med ; 29(8): 691-698, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36477450

RESUMO

OBJECTIVE: To investigate the mechanism by which Chinese medicine Shengmai Yin (SMY) reverses epithelial-mesenchymal transition (EMT) through lipocalin-2 (LCN2) in nasopharyngeal carcinoma (NPC) cells CNE-2R. METHODS: Morphological changes in EMT in CNE-2R cells were observed under a microscope, and the expressions of EMT markers were detected using quantitative real-time PCR (RT-qPCR) and Western blot assays. Through the Gene Expression Omnibus dataset and text mining, LCN2 was found to be highly related to radiation resistance and EMT in NPC. The expressions of LCN2 and EMT markers following SMY treatment (50 and 100 µ g/mL) were detected by RT-qPCR and Western blot assays in vitro. Cell proliferation, migration, and invasion abilities were measured using colony formation, wound healing, and transwell invasion assays, respectively. The inhibitory effect of SMY in vivo was determined by observing a zebrafish xenograft model with a fluorescent label. RESULTS: The CNE-2R cells showed EMT transition and high expression of LCN2, and the use of SMY (5, 10 and 20 µ g/mL) reduced the expression of LCN2 and reversed the EMT in the CNE-2R cells. Compared to that of the CNE-2R group, the proliferation, migration, and invasion abilities of SMY high-concentration group were weakened (P<0.05). Moreover, SMY mediated tumor growth and metastasis in a dose-dependent manner in a zebrafish xenograft model, which was consistent with the in vitro results. CONCLUSIONS: SMY can reverse the EMT process of CNE-2R cells, which may be related to its inhibition of LCN2 expression. Therefore, LCN2 may be a potential diagnostic marker and therapeutic target in patients with NPC.


Assuntos
Transição Epitelial-Mesenquimal , Neoplasias Nasofaríngeas , Animais , Humanos , Carcinoma Nasofaríngeo/tratamento farmacológico , Carcinoma Nasofaríngeo/genética , Peixe-Zebra , Proliferação de Células , Linhagem Celular Tumoral , Neoplasias Nasofaríngeas/tratamento farmacológico , Neoplasias Nasofaríngeas/genética , Neoplasias Nasofaríngeas/radioterapia , Movimento Celular , Regulação Neoplásica da Expressão Gênica
15.
Biol Trace Elem Res ; 201(6): 2823-2842, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-35870071

RESUMO

Bone defects are often caused by trauma or surgery and can lead to delayed healing or even bone nonunion, thereby resulting in impaired function of the damaged site. Magnesium ions and related metallic materials play a crucial role in repairing bone defects, but the mechanism remains unclear. In this study, we induced the angiogenic differentiation of bone marrow stromal cells (BMSCs) with different concentrations of magnesium ions. The mechanism was investigated using γ-secretase inhibitor (DAPT) at different time points (7 and 14 days). Angiogenesis, differentiation, migration, and chemotaxis were detected using the tube formation assay, wound-healing assay, and Transwell assay. Besides, we analyzed mRNA expression and the angiogenesis-related protein levels of genes by RT-qPCR and western blot. We discovered that compared with other concentrations, the 5 mM magnesium ion concentration was more conducive to forming tubes. Additionally, hypoxia-inducible factor 1 alpha (Hif-1α) and endothelial nitric oxide (eNOS) expression both increased (p < 0.05). After 7 and 14 days of induction, 5 mM magnesium ion group tube formation, migration, and chemotaxis were enhanced, and the expression of Notch pathway genes increased. Moreover, expression of the Notch target genes hairy and enhancer of split 1 (Hes1) and Hes5 (hairy and enhancer of split 5), as well as the angiogenesis-related genes Hif-1α and eNOS, were enhanced (p < 0.05). However, these trends did not occur when DAPT was applied. This indicates that 5 mM magnesium ion is the optimal concentration for promoting the angiogenesis and differentiation of BMSCs in vitro. By activating the Notch signaling pathway, magnesium ions up-regulate the downstream genes Hes1 and Hes5 and the angiogenesis-related genes Hif-1α and eNOS, thereby promoting the angiogenesis differentiation of BMSCs. Additionally, magnesium ion-induced differentiation enhances the migration and chemotaxis of BMSCs. Thus, we can conclude that magnesium ions and related metallic materials promote angiogenesis to repair bone defects. This provides the rationale for developing artificial magnesium-containing bone materials through tissue engineering.


Assuntos
Magnésio , Células-Tronco Mesenquimais , Ratos , Animais , Magnésio/farmacologia , Magnésio/metabolismo , Células-Tronco Mesenquimais/metabolismo , Osso e Ossos/metabolismo , Engenharia Tecidual/métodos , Transdução de Sinais , Células da Medula Óssea/metabolismo , Diferenciação Celular , Osteogênese , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo
16.
Front Microbiol ; 13: 980591, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36504782

RESUMO

Gut microbiome (GMB) disturbance can induce chronic low-grade inflammation, which is closely related to the occurrence and development of osteoarthritis (OA). However, the relationship between GMB and OA remains unclear. In this study, we collected stool samples from OA patients and healthy people, and performed Alpha diversity, Beta diversity, MetaStat, and LEfSe analysis by 16S rRNA sequencing to find out the species with significant difference between the two groups. Random forest analysis was performed to find out biomarkers that could distinguish between OA patients and healthy people. PICRUSt and Bugbase analysis were used to compare the difference in functions and phenotypes. Multivariate linear regression analysis (MaAsLin) was used to adjust for gender, age, and body mass index (BMI). The results showed that there was a significant difference in the overall composition of GMB between the two groups (p = 0.005). After adjusting for gender, age, and BMI, we found that p_Bacteroidota (Q = 0.039), c_Bacteroidia (Q = 0.039), and o_Bacteroidales (Q = 0.040) were enriched in the OA group, while s_Prevotella_copri (Q = 0.001) was enriched in the healthy control group. Prevotella could distinguish between OA patients and healthy people with a better diagnostic power (AUC = 77.5%, p < 0.001, 95% CI: 66.9-88.1%). The functions of DNA transcription, amino acid metabolism (including histidine, lysine, and isoleucine), ATP metabolism, and phospholipid metabolism significantly decreased, while glucose metabolism, protein acetylation, and aspartate kinase activity significantly increased in the OA group. In terms of phenotypes, we found that the relative abundance of aerobic (p = 0.003) and Gram-negative (p < 0.001) was higher in the OA group, while contains mobile elements (p = 0.001) and Gram-positive (p < 0.001) were higher in the healthy control group. Our study preliminarily demonstrated that there were differences in the composition, function, and phenotype of GMB in stool samples between OA patients and healthy people, which provided a novel perspective on further study in OA.

17.
J Clin Pharm Ther ; 46(1): 227-229, 2021 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-32949406

RESUMO

WHAT IS KNOWN AND OBJECTIVE: We present two cases of severe coagulation disorders induced by latamoxef, thereby revealing risk factors of coagulation disorder in latamoxef-treated patients. CASE SUMMARY: Two very elderly patients developed haemorrhage, and coagulation tests showed a longer prothrombin time (PT), activated partial thromboplastin time (APTT) and a high international normalized ratio (INR). Latamoxef was thought to be responsible for the coagulopathy in these patients, and coagulation disorder was relieved after vitamin-K intake. WHAT IS NEW AND CONCLUSION: We report on two cases of coagulopathy in patients given latamoxef. Advanced age, deficiency in vitamin-K intake, poor nutritional status, abnormal coagulation history, ongoing anti-coagulation/anti-aggregation therapy, renal dysfunction and polypharmacy are possible contributory factors, and should be looked out for when prescribing latamoxef.


Assuntos
Antibacterianos/uso terapêutico , Transtornos da Coagulação Sanguínea/diagnóstico , Moxalactam/uso terapêutico , Pneumonia Bacteriana/tratamento farmacológico , Idoso de 80 Anos ou mais , Antibacterianos/administração & dosagem , Antibacterianos/efeitos adversos , Transtornos da Coagulação Sanguínea/sangue , Testes de Coagulação Sanguínea , Diagnóstico Diferencial , Humanos , Coeficiente Internacional Normatizado , Masculino , Moxalactam/administração & dosagem , Moxalactam/efeitos adversos , Tempo de Tromboplastina Parcial
18.
ACS Appl Mater Interfaces ; 11(20): 18305-18312, 2019 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-31046217

RESUMO

SiO x coating is an effective strategy to prolong the cycling stability of Si-based anodes due to the robust interaction between Si and the SiO x layer. However, the SiO x layer-protected Si anode is limited by the relatively low initial Coulombic efficiency and sluggish Li+ diffusion ability induced by the SiO x layer. Herein, we present the preparation of selectively prelithiated Si@SiO x (Si@Li2SiO3) anode by using a facile strategy to resolve the above issues. As the anode for lithium ion batteries, Si@Li2SiO3 exhibits a high initial Coulombic efficiency (ICE) of 89.1%, an excellent rate performance (959 mA h g-1 at 30 A g-1), and a superior capacity retention (3215 mA h g-1). The full cell with LiFePO4 cathode and Si@Li2SiO3 anodes is successfully assembled, disclosing a high ICE of 91.1% and excellent long cycling stability. The superior electrochemical performance of Si@Li2SiO3 can be attributed to the coating layer, which can strengthen the integrity of the electrode, decrease irreversible reactions, and provide efficient Li+ diffusion channels.

19.
Small ; 14(47): e1802457, 2018 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-30328267

RESUMO

To better couple with commercial cathodes, such as LiCoO2 and LiFePO4 , graphite-based composites containing a small proportion of silicon are recognized as promising anodes for practical application in lithium-ion batteries (LIBs). However, the prepared Si/C composite still suffers from either rapid capacity fading or the high cost up to now. Here, the facile preparation of hierarchical graphene-scaffolded silicon/graphite composite is reported. In this designed 3D structure, Si nanoparticles are homogeneously dispersed on commercial graphites and then uniformly encapsulated in the hierarchical graphene scaffold. This hierarchical structure is also well characterized by the synchrotron X-ray computed nanotomography technique. When evaluated as anodes for LIBs, the hierarchical composite, with the Si weight ratio of 5 wt%, exhibits a reversible capacity of 559 mA h g-1 at 75 mA g-1 , suggesting an unprecedented utilization of Si up to 95%. Even at 372 mA g-1 , the composite can still maintain a high capacity retention of 90% after 100 cycles. Coupled with the LiFePO4 cathode, the full cell shows the high capacity of 114 mA h g-1 at 170 mA g-1 . The excellent Li-storage properties can be ascribed to the unique designed hierarchical structure.

20.
Int J Antimicrob Agents ; 48(3): 231-8, 2016 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-27475877

RESUMO

Daptomycin and linezolid are the most commonly used antibiotics for bloodstream infection caused by vancomycin-resistant enterococci (VRE-BSI). However, the best therapeutic agent to treat VRE-BSI remains to be established. In order to provide evidence for an optimal treatment decision, a systematic review and meta-analysis was performed comparing the efficacy and safety of daptomycin and linezolid for the treatment of VRE-BSI. After thorough searching of relevant studies from MEDLINE, EMBASE, Clinicaltrials.gov and international meetings up to November 2015, 11 retrospective cohort studies were finally included with a sample size of 1339 patients. Among these 11 included studies, all patients in the daptomycin group received standard or high-dose daptomycin treatment (≥6 mg/kg/day). Data were extracted and pooled risk ratios (RRs) and 95% confidence intervals (95% CIs) were calculated using a random-effects model. The meta-analysis indicated similar crude overall mortality between patients receiving daptomycin and those treated with linezolid (RR = 1.07, 95% CI 0.83-1.37). Moreover, no difference regarding clinical cure (RR = 1.11, 95% CI 0.88-1.42), microbiological cure (RR = 0.99, 95% CI 0.90-1.09) or relapse rate of VRE-BSI (RR = 1.08, 95% CI 0.76-1.52) was found between daptomycin and linezolid. Adverse event rates were not significantly different between the two groups. Currently available evidence indicates similar efficacy and safety of daptomycin and linezolid for the treatment of VRE-BSI. However, the findings in the meta-analysis are limited by heterogeneity between relatively small-scale retrospective studies and should be interpreted cautiously.


Assuntos
Antibacterianos/administração & dosagem , Daptomicina/administração & dosagem , Linezolida/administração & dosagem , Sepse/tratamento farmacológico , Enterococos Resistentes à Vancomicina/efeitos dos fármacos , Antibacterianos/efeitos adversos , Daptomicina/efeitos adversos , Efeitos Colaterais e Reações Adversas Relacionados a Medicamentos , Humanos , Linezolida/efeitos adversos , Sepse/microbiologia , Análise de Sobrevida , Resultado do Tratamento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA