Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Hazard Mater ; 450: 130996, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36867904

RESUMO

The degradation of micropollutants by various treatments is commonly affected by the ubiquitous dissolved organic matter (DOM) in the water environment. To optimize the operating conditions and decomposition efficiency, it is necessary to consider the impacts of DOM. DOM exhibits varied behaviors in diverse treatments, including permanganate oxidation, solar/ultraviolet photolysis, advanced oxidation processes, advanced reduction process, and enzyme biological treatments. Besides, the different sources (i.e., terrestrial and aquatic, etc) of DOM, and operational circumstances (i.e., concentration and pH) fluctuate different transformation efficiency of micropollutants in water. However, so far, systematic explanations and summaries of relevant research and mechanism are rare. This paper reviewed the "trade-off" performances and the corresponding mechanisms of DOM in the elimination of micropollutants, and summarized the similarities and differences for the dual roles of DOM in each of the aforementioned treatments. Inhibition mechanisms typically include radical scavenging, UV attenuation, competition effect, enzyme inactivation, reaction between DOM and micropollutants, and intermediates reduction. Facilitation mechanisms include the generation of reactive species, complexation/stabilization, cross-coupling with pollutants, and electron shuttle. Moreover, electron-drawing groups (i.e., quinones, ketones functional groups) and electron-supplying groups (i.e., phenols) in the DOM are the main contributors to its trade-off effect.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA