Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
BMC Genomics ; 25(1): 492, 2024 May 17.
Artigo em Inglês | MEDLINE | ID: mdl-38760719

RESUMO

Rapeseed (Brassica napus L.), accounts for nearly 16% of vegetable oil, is the world's second produced oilseed. However, pod shattering has caused significant yield loses in rapeseed production, particularly during mechanical harvesting. The GH28 genes can promote pod shattering by changing the structure of the pod cell wall in Arabidopsis. However, the role of the GH28 gene family in rapeseed was largely unknown. Therefore, a genome-wide comprehensive analysis was conducted to classify the role of GH28 gene family on rapeseed pod shattering. A total of 37 BnaGH28 genes in the rapeseed genome were identified. These BnaGH28s can be divided into five groups (Group A-E), based on phylogenetic and synteny analysis. Protein property, gene structure, conserved motif, cis-acting element, and gene expression profile of BnaGH28 genes in the same group were similar. Specially, the expression level of genes in group A-D was gradually decreased, but increased in group E with the development of silique. Among eleven higher expressed genes in group E, two BnaGH28 genes (BnaA07T0199500ZS and BnaC06T0206500ZS) were significantly regulated by IAA or GA treatment. And the significant effects of BnaA07T0199500ZS variation on pod shattering resistance were also demonstrated in present study. These results could open a new window for insight into the role of BnaGH28 genes on pod shattering resistance in rapeseed.


Assuntos
Brassica napus , Filogenia , Proteínas de Plantas , Brassica napus/genética , Proteínas de Plantas/genética , Regulação da Expressão Gênica de Plantas , Família Multigênica , Genoma de Planta , Sintenia , Perfilação da Expressão Gênica
2.
Plant Biotechnol J ; 2024 May 31.
Artigo em Inglês | MEDLINE | ID: mdl-38817148

RESUMO

Cadmium (Cd) is one of the most toxic heavy metals faced by plants and, additionally, via the food chain, threatens human health. It is principally dispersed through agro-ecosystems via anthropogenic activities and geogenic sources. Given its high mobility and persistence, Cd, although not required, can be readily assimilated by plants thereby posing a threat to plant growth and productivity as well as animal and human health. Thus, breeding crop plants in which the edible parts contain low to zero Cd as safe food stuffs and harvesting shoots of high Cd-containing plants as a route for decontaminating soils are vital strategies to cope with this problem. Recently, multiomics approaches have been employed to considerably enhance our understanding of the mechanisms underlying (i) Cd toxicity, (ii) Cd accumulation, (iii) Cd detoxification and (iv) Cd acquisition tolerance in plants. This information can be deployed in the development of the biotechnological tools for developing plants with modulated Cd tolerance and detoxification to safeguard cellular and genetic integrity as well as to minimize food chain contamination. The aim of this review is to provide a current update about the mechanisms involved in Cd uptake by plants and the recent developments in the area of multiomics approach in terms of Cd stress responses, as well as in the development of Cd tolerant and low Cd accumulating crops.

3.
BMC Plant Biol ; 24(1): 21, 2024 Jan 02.
Artigo em Inglês | MEDLINE | ID: mdl-38166550

RESUMO

Rapeseed (Brassica napus L.) with short or no dormancy period are easy to germinate before harvest (pre-harvest sprouting, PHS). PHS has seriously decreased seed weight and oil content in B. napus. Short-chain dehydrogenase/ reductase (SDR) genes have been found to related to seed dormancy by promoting ABA biosynthesis in rice and Arabidopsis. In order to clarify whether SDR genes are the key factor of seed dormancy in B. napus, homology sequence blast, protein physicochemical properties, conserved motif, gene structure, cis-acting element, gene expression and variation analysis were conducted in present study. Results shown that 142 BnaSDR genes, unevenly distributed on 19 chromosomes, have been identified in B. napus genome. Among them, four BnaSDR gene clusters present in chromosome A04、A05、C03、C04 were also identified. These 142 BnaSDR genes were divided into four subfamilies on phylogenetic tree. Members of the same subgroup have similar protein characters, conserved motifs, gene structure, cis-acting elements and tissue expression profiles. Specially, the expression levels of genes in subgroup A, B and C were gradually decreased, but increased in subgroup D with the development of seeds. Among seven higher expressed genes in group D, six BnaSDR genes were significantly higher expressed in weak dormancy line than that in nondormancy line. And the significant effects of BnaC01T0313900ZS and BnaC03T0300500ZS variation on seed dormancy were also demonstrated in present study. These findings provide a key information for investigating the function of BnaSDRs on seed dormancy in B. napus.


Assuntos
Brassica napus , Brassica rapa , Brassica napus/genética , Brassica napus/metabolismo , Dormência de Plantas/genética , Perfilação da Expressão Gênica , Filogenia , Brassica rapa/genética , Sementes/genética , Sementes/metabolismo , Regulação da Expressão Gênica de Plantas
4.
Plants (Basel) ; 12(13)2023 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-37447144

RESUMO

Dihydroflavonol 4-reductase (DFR) is a key enzyme in the flavonoid biosynthetic pathway and is essential for the formation of plants' color. In this study, 26 BnDFR genes were identified using 6 Arabidopsis DFR genes as reference. The physicochemical properties, subcellular localization, and conserved structure of BnDFR proteins were analyzed; the evolutionary relationship, collinearity analysis, and expression characteristics of BnDFR genes were studied; and the correlation between the expression level of BnDFR genes and anthocyanin content in rape petals were analyzed. The results showed that the 26 BnDFRs were located in chloroplasts, cytoplasm, nuclei, and mitochondria, distributed on 17 chromosomes, and divided into 4 groups; members of the same group have a similar function, which may be related to the environmental response elements and plant hormone response elements. Intraspecific collinearity analysis showed 51 pairs of collinear genes, and interspecific collinearity analysis showed 30 pairs of collinear genes. Analysis of the expression levels of BnDFRs and anthocyanin content in different color rape petals showed that BnDFR6 and BnDFR26 might play an important role in the synthesis of anthocyanins in rape petals. This provides theoretical guidance for further analysis of the anthocyanin anabolism mechanism involved in the DFR gene in Brassica napus.

5.
Front Plant Sci ; 14: 1096831, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37342142

RESUMO

Sclerotinia sclerotiorum, the causal agent of Sclerotinia stem rot (SSR) on more than 450 plant species, is a notorious fungal pathogen. Nitrate reductase (NR) is required for nitrate assimilation that mediates the reduction of nitrate to nitrite and is the major enzymatic source for NO production in fungi. To explore the possible effects of nitrate reductase SsNR on the development, stress response, and virulence of S. sclerotiorum, RNA interference (RNAi) of SsNR was performed. The results showed that SsNR-silenced mutants showed abnormity in mycelia growth, sclerotia formation, infection cushion formation, reduced virulence on rapeseed and soybean with decreased oxalic acid production. Furthermore SsNR-silenced mutants are more sensitive to abiotic stresses such as Congo Red, SDS, H2O2, and NaCl. Importantly, the expression levels of pathogenicity-related genes SsGgt1, SsSac1, and SsSmk3 are down-regulated in SsNR-silenced mutants, while SsCyp is up-regulated. In summary, phenotypic changes in the gene silenced mutants indicate that SsNR plays important roles in the mycelia growth, sclerotia development, stress response and fungal virulence of S. sclerotiorum.

6.
Sci Total Environ ; 858(Pt 3): 160073, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36356731

RESUMO

Hydrogen sulfide (H2S) is a gaseous mediator that plays versatile roles in plant growth and stress responses. However, the regulatory functions of H2S in plant responses to aluminum (Al) stress remain elusive. We observed that application of 20 µM of NaHS (H2S donor) or 0.2 mM of hypotaurine (HT, H2S scavenger) significantly mitigated the inhibition of rapeseed root growth caused by Al stress (150 µM). Exposure to Al for 6 h induced significant H2S accumulation and high levels were maintained thereafter, owing to the elevation of cysteine (83.73 %), L-cysteine desulfhydrase (LCD, 92.32 %), and cyanoalanine synthase (CAS, 11.23 %), and the inhibition of O-Acetyl-l-serine (thiol) lyase (OAS-TL, 15.13 %). Addition of HT significantly scavenged the prolonged H2S accumulation caused by Al stress. Exogenous NaHS maintained the H2S homeostasis through increasing OAS-TL activity (34.99 %) and inhibiting LCD activity (25.72 %), and cysteine level (39.53 %). Moreover, exogenous NaHS mitigated oxidative damage by enhancing antioxidant enzyme activity (SOD 26.27 %, POD 28.62 %, CAT 400.5 % and APX 92.68 %) and proline content (19.85 %). It also decreased root cell wall Al accumulation (20.52 %) by decreasing PME activity (24.64 %) and facilitating pectin methylation (16.74 %). Similar alleviative effects were observed when HT was added. These results suggest that H2S functions differential roles in Al stress response in rapeseed seedlings, depending on its local concentration and duration. Prolonged high H2S emissions might contribute to Al toxicity, while moderate exogenous H2S improves Al tolerance through controlling H2S and ROS accumulation and enhancing Al exclusion through replenishing antioxidant reservoirs and facilitating pectin methylation. It is therefore important that further study investigates how to orchestrate endogenous H2S levels and improve plant stress tolerance.


Assuntos
Brassica napus , Alumínio/toxicidade , Cisteína
7.
BMC Plant Biol ; 19(1): 577, 2019 Dec 23.
Artigo em Inglês | MEDLINE | ID: mdl-31870301

RESUMO

BACKGROUND: Seed dormancy is a prevailing condition in which seeds are unable to germinate, even under favorable environmental conditions. Harvested Brassica oleracea (Chinese cabbage) seeds are dormant and normally germinate (poorly) at 21 °C. This study investigated the connections between ethylene, nitric oxide (NO), and karrikin 1 (KAR1) in the dormancy release of secondary dormant Brassica oleracea seeds. RESULTS: NO and KAR1 were found to induce seed germination, and stimulated the production of ethylene and 1-aminocyclopropane-1-carboxylic acid (ACC), and both ethylene biosynthesis enzyme ACC oxidase (ACO) [1] and ACC synthase (ACS) [2]. In the presence of NO and KAR1, ACS and ACO activity reached maximum levels after 36 and 48 h, respectively. The inhibitor of ethylene 2,5-norbornadiene (NBD) had an adverse effect on Brassica oleracea seed germination (inhibiting nearly 50% of germination) in the presence of NO and KAR1. The benefits from NO and KAR1 in the germination of secondary dormant Brassica oleracea seeds were also associated with a marked increase in reactive oxygen species (ROS) (H2O2 and O2˙-) and antioxidant enzyme activity at early germination stages. Catalase (CAT) and glutathione reductase (GR) activity increased 2 d and 4 d, respectively, after treatment, while no significant changes were observed in superoxide dismutase (SOD) activity under NO and KAR1 applications. An increase in H2O2 and O2˙- levels were observed during the entire incubation period, which increasing ethylene production in the presence of NO and KAR1. Abscisic acid (ABA) contents decreased and glutathione reductase (GA) contents increased in the presence of NO and KAR1. Gene expression studies were carried out with seven ethylene biosynthesis ACC synthases (ACS) genes, two ethylene receptors (ETR) genes and one ACO gene. Our results provide more evidence for the involvement of ethylene in inducing seed germination in the presence of NO and KAR1. Three out of seven ethylene biosynthesis genes (BOACS7, BOACS9 and BOACS11), two ethylene receptors (BOETR1 and BOETR2) and one ACO gene (BOACO1) were up-regulated in the presence of NO and KAR1. CONCLUSION: Consequently, ACS activity, ACO activity and the expression of different ethylene related genes increased, modified the ROS level, antioxidant enzyme activity, and ethylene biosynthesis pathway and successfully removed (nearly 98%) of the seed dormancy of secondary dormant Brassica olereace seeds after 7 days of NO and KAR1 application.


Assuntos
Antioxidantes/metabolismo , Brassica/fisiologia , Dormência de Plantas , Reguladores de Crescimento de Plantas/farmacologia , Espécies Reativas de Oxigênio/metabolismo , Sementes/fisiologia , Vias Biossintéticas , Brassica/efeitos dos fármacos , Etilenos/farmacologia , Furanos/farmacologia , Óxido Nítrico/farmacologia , Dormência de Plantas/efeitos dos fármacos , Piranos/farmacologia , Sementes/efeitos dos fármacos
8.
J Agric Food Chem ; 67(1): 433-440, 2019 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-30569699

RESUMO

The association between hydrogen sulfide (H2S) and cell wall composition with regard to the mitigation of cadmium (Cd) toxicity in Brassica napus L. was investigated. Cd caused growth retardation, leaf chlorosis, and decreased endogenous H2S content in Brassica napus roots. Stimulating l-cysteine desulfhydrase (LCD)-mediated H2S production with H2S releaser (NaHS) markedly improved plant growth, reduced Cd content in stems and leaves, and rescued Cd-induced chlorosis. Furthermore, increased Cd retention was observed in root cell walls, indicating that NaHS reduced Cd movement from the roots to upper-plant parts. Exogenous NaHS also significantly increased the content of pectin and the activity of pectin methylesterase in cell walls of roots, thereby increasing Cd retention in pectin fractions. However, intensification of H2S barely affected hemicellulose content under Cd stress. Intensified H2S signal, therefore, alleviates Cd toxicity in Brassica napus by increasing pectin content and its demethylation, increasing Cd fixation in cell walls, and reducing root-to-shoot Cd translocation.


Assuntos
Brassica napus/metabolismo , Cádmio/metabolismo , Raízes de Plantas/metabolismo , Brotos de Planta/metabolismo , Sulfetos/metabolismo , Transporte Biológico , Cistationina gama-Liase/metabolismo , Sulfeto de Hidrogênio/metabolismo , Proteínas de Plantas/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA