Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 65
Filtrar
1.
Front Cardiovasc Med ; 11: 1369642, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38716483

RESUMO

Refractory heart failure (RHF), or end-stage heart failure, has a poor prognosis and high case fatality rate, making it one of the therapeutic difficulties in the cardiovascular field. Despite the continuous abundance of methods and means for treating RHF in modern medicine, it still cannot meet the clinical needs of patients with RHF. How to further reduce the mortality rate and readmission rate of patients with RHF and improve their quality of life is still a difficult point in current research. In China, traditional Chinese medicine (TCM) has been widely used and has accumulated rich experience in the treatment of RHF due to its unique efficacy and safety advantages. Based on this, we comprehensively summarized and analyzed the clinical evidence and mechanism of action of TCM in the treatment of RHF and proposed urgent scientific issues and future research strategies for the treatment of RHF with TCM, to provide reference for the treatment of RHF.

2.
J Ethnopharmacol ; 331: 118337, 2024 May 11.
Artigo em Inglês | MEDLINE | ID: mdl-38740110

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Microthrombosis is commonly seen in sepsis and COVID-19. Zixue Powder (ZXP) is a traditional Chinese herbal formula with the potential to treat microvascular and infectious diseases. However, the role and mechanism of ZXP in sepsis-associated thrombosis remain unclear. AIM OF THE STUDY: Investigating the therapeutic effectiveness and underlying mechanisms of ZXP in septic thrombosis. MATERIALS AND METHODS: ZXP's compositions were examined with UPLC-QTOF-MS. The efficacy of ZXP on sepsis-induced thrombosis was assessed through various methods: liver tissue pathology was examined using hematoxylin-eosin staining, platelet count was determined by a blood cell analyzer, and an enzyme-linked immunosorbent assay (ELISA) was used to detect the levels of serum tissue factor (TF), thromboxane B2 (TXB2), D-Dimer, and plasminogen activator inhibitor-1 (PAI-1). Neutrophil extracellular traps (NETs) were localized and expressed in liver tissues by immunofluorescence, and the number of NETs in peripheral blood was evaluated by ELISA, which measured the quantity of cf-DNA and MPO-DNA in serum. Platelet P-selectin expression and platelet-neutrophil aggregation were measured by flow cytometry, and plasma P-selectin expression was measured by ELISA. Furthermore, the mechanism of the stimulator of interferon genes (STING) signaling pathway in ZXP's anti-sepsis thrombosis effect was investigated using the STING agonist, Western blot experiments, and immunoprecipitation experiments. RESULTS: UPLC-QTOF-MS identified 40 chemical compositions of ZXP. Administration of ZXP resulted in significant improvements in liver thrombosis, platelet counts, and levels of TXB2, TF, PAI-1, and D-Dimer in septic rats. Moreover, ZXP inhibited NETs formation in both liver tissue and peripheral blood. Additionally, ZXP decreased the levels of P-selectin in both platelets and plasma, as well as the formation of platelet-neutrophil aggregates, thereby suppressing P-selectin-mediated NETs release. Immunoprecipitation and immunofluorescence staining experiments revealed that ZXP attenuated P-selectin secretion by inhibiting STING-mediated assembly of platelet soluble N-ethylmaleimide-sensitive factor attachment protein receptors (SNAREs) complex, ultimately preventing inhibition of NETs formation. CONCLUSION: Our study showed that ZXP effectively mitigates platelet granule secretion primarily through modulation of the STING pathway, consequently impeding NET-associated thrombosis in sepsis. These findings offer valuable insights for future research on the development and application of ZXP.

3.
J Ethnopharmacol ; 325: 117825, 2024 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-38296175

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: As a classic traditional Chinese medicine, Magnolia officinalis (M. officinalis) is widely used in digestive diseases. It has rich gastrointestinal activity including inflammatory bowel disease (IBD) treatment, but the mechanism is not clear. AIM OF THE STUDY: In recent years, there has been a growing interest in investigating the regulatory effects of herbal compounds on transient receptor potential (TRP) channel proteins. Transient receptor potential vanilloid 4 (TRPV4), a subtype involved in endothelial permeability regulation, was discussed as the target of M. officinalis in the treatment of IBD in the study. Based on the targeting effect of TRPV4, this study investigated the active ingredients and mechanism of M. officinalis extract in treating IBD. MATERIALS AND METHODS: To reveal the connection between the active ingredients in M. officinalis and TRPV4, a bioactivity-guided high performance liquid chromatography system coupled with mass spectrometry identification was utilized to screen for TRPV4 antagonists. TRPV4 siRNA knockdown experiment was employed to validate the significance of TRPV4 as a crucial target in regulating endothelial permeability by honokiol (HON). The interaction of the active ingredient representing HON with TRPV4 was confirmed by molecular docking, fluorescence-based thermal shift and live cell calcium imaging experiments. The potential binding sites and inhibitory mechanisms of HON in TRPV4 were analyzed by molecular dynamics simulation and microscale thermophoresis. The therapeutic effect of HON based on TRPV4 was discussed in DSS-IBD mice. RESULTS: Our finding elucidated that the inhibitory activity of M. officinalis against TRPV4 is primarily attributed to HON analogues. The knockdown of TRPV4 expression significantly impaired the calcium regulation and permeability protection in endothelial cells. The mechanism study revealed that HON specifically targets the Q239 residue located in the ankyrin repeat domain of TRPV4, and competitively inhibits channel opening with adenosine triphosphate (ATP) binding. The immunofluorescence assay demonstrated that the administration of HON enhances the expression and location of VE-Cadherin to protect the endothelial barrier and attenuates immune cell infiltration. CONCLUSIONS: The finding suggested that HON alleviates IBD by improving endothelial permeability through TRPV4. The discovery provides valuable insights into the potential therapeutic strategy of active natural products for alleviating IBD.


Assuntos
Compostos Alílicos , Repetição de Anquirina , Compostos de Bifenilo , Doenças Inflamatórias Intestinais , Fenóis , Camundongos , Animais , Células Endoteliais , Canais de Cátion TRPV/metabolismo , Cálcio/metabolismo , Simulação de Acoplamento Molecular , Doenças Inflamatórias Intestinais/tratamento farmacológico , Doenças Inflamatórias Intestinais/metabolismo , Permeabilidade
4.
Pharm Biol ; 61(1): 1512-1524, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38069658

RESUMO

CONTEXT: Zi Xue Powder (ZXP) is a traditional formula for the treatment of fever. However, the potential mechanism of action of ZXP remains unknown. OBJECTIVE: This study elucidates the antipyretic characteristics of ZXP and the mechanism by which ZXP alleviates fever. MATERIALS AND METHODS: The key targets and underlying fever-reducing mechanisms of ZXP were predicted using network pharmacology and molecular docking. The targets of ZXP anti-fever active ingredient were obtained by searching TCMSP, STITCH and HERB. Moreover, male Sprague-Dawley rats were randomly divided into four groups: control, lipopolysaccharide (LPS), ZXP (0.54, 1.08, 2.16 g/kg), and positive control (acetaminophen, 0.045 g/kg); the fever model was established by intraperitoneal LPS injection. After the fever model was established at 0.5 h, the rats were administered treatment by gavage, and the anal temperature changes of each group were observed over 10 h after treatment. After 10 h, ELISA and Western blot analysis were used to further investigate the mechanism of ZXP. RESULTS: Network pharmacology analysis showed that MAPK was a crucial pathway through which ZXP suppresses fever. The results showed that ZXP (2.16 g/kg) decreased PGE2, CRH, TNF-a, IL-6, and IL-1ß levels while increasing AVP level compared to the LPS group. Furthermore, the intervention of ZXP inhibited the activation of MAPK pathway in LPS-induced fever rats. CONCLUSIONS: This study provides new insights into the mechanism by which ZXP reduces fever and provides important information and new research ideas for the discovery of antipyretic compounds from traditional Chinese medicine.


Assuntos
Antipiréticos , Medicamentos de Ervas Chinesas , Ratos , Masculino , Animais , Antipiréticos/farmacologia , Antipiréticos/uso terapêutico , Ratos Sprague-Dawley , Pós/efeitos adversos , Simulação de Acoplamento Molecular , Lipopolissacarídeos/toxicidade , Farmacologia em Rede , Febre/tratamento farmacológico , Febre/induzido quimicamente , Medicamentos de Ervas Chinesas/efeitos adversos
5.
Chin Herb Med ; 15(4): 496-508, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094018

RESUMO

Ischemic stroke (IS) is a severe cerebrovascular disease with a high incidence, mortality, and disability rate. The first-line treatment for IS is the use of recombinant tissue plasminogen activator (r-tPA). Regrettably, numerous patients encounter delays in treatment due to the narrow therapeutic window and the associated risk of hemorrhage. Traditional Chinese medicine (TCM) has exhibited distinct advantages in preventing and treating IS. TCM enhances cerebral microcirculation, alleviates neurological disorders, regulates energy metabolism, mitigates inflammation, reduces oxidative stress injuries, and inhibits apoptosis, thereby mitigating brain damage and preventing IS recurrence. This article summarizes the etiology, pathogenesis, therapeutic strategies, and relationship with modern biology of IS from the perspective of TCM, describes the advantages of TCM in the treatment of IS, and further reviews the pharmacodynamic characteristics and advantages of TCM in the acute and recovery phases of IS as well as in post-stroke complications. Additionally, it offers valuable insights and references for the clinical application of TCM in IS prevention and treatment, as well as for the development of novel drugs.

6.
Chin Herb Med ; 15(4): 476-484, 2023 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-38094019

RESUMO

Modern medicine has made remarkable achievements in safeguarding people's life and health, however, it is increasingly found that in the face of complex diseases, selective targeting of single target is often difficult to produce a comprehensive rehabilitation effect, and is prone to induce drug resistance, toxic side effects. Traditional Chinese medicine (TCM) has a long history of clinical application, and its clinical value in the treatment of complex diseases such as cardiovascular and cerebrovascular diseases, digestive diseases, skin diseases, rheumatism and immunity diseases, and adjuvant treatment of tumors has been proven to have obvious advantages. However, its modern research is relatively lagging behind, and in the face of the aging society and the characteristics of the modern disease spectrum, the traditional knowledge-driven research paradigm seems to be stuck in a bottleneck and difficult to make greater breakthroughs. Focusing on the key issues of TCM development in the new era, the clinical value-oriented strategy becomes to be a new research paradigm of TCM inheritance and innovation development, and dominant diseases would be the focus of the TCM inheritance and innovation development, which has been highly valued in recent years by the TCM academia and the relevant national management departments. Based on the clinical value, a series of policies are formulated for the selection and evaluation of the TCM dominant diseases (TCMDD), and exploratory researches about the clinical efficacy characteristics, the modern scientific connotation interpretation were carried out. The clinical value-oriented research paradigm of TCMDD inheritance and innovation development has been initially formed, which is characterized by strong policy support as the guarantee, systematic and standardized selection and evaluation methods as the driving force, scientific and effective research on internal mechanisms as the expansion, and effective clinical guidelines and principles as the transformation, which is of great value in promoting the high-quality development of the industries and undertaking of TCM. In this paper, the main policy support, selection and evaluation methods, therapeutic effect characterization, and modern scientific connotation research strategies of TCMDD in recent years have been comprehensively sorted out, with a view to providing the healthy and benign development of the research on TCMDD.

7.
Int J Biol Macromol ; 253(Pt 3): 126780, 2023 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-37699459

RESUMO

Luteolin is a kind of natural flavonoid with great potential for lipid accumulation intervention. However, the poor water solubility and non-targeted release greatly diminish its efficiency. In this study, 4-aminophenyl ß-D-galactopyranoside (Gal-NH2)/mulberry leaf polysaccharides- lysozyme/luteolin nanoparticles (Gal-MPL/Lut) were fabricated via amide reaction, self-assembly process and electrostatic interaction. The nanoparticles could hepatic-target of Lut and enhance action on liver tissue by specific recognition of asialoglycoprotein receptor (ASGPR). Physicochemical characterization of the nanoparticles showed a spherical shape with a uniform particle size distribution (77.8 ± 2.6 nm) with a polydispersity index (PDI) of 0.22 ± 0.06. Subsequently, in HepG2 cells model, administration with hepatic-targeted Gal-MPL/Lut nanoparticles promoted the cellular uptake of Lut, and regulated lipid metabolism manifested by remarkably inhibiting total cholesterol (TC) and triglyceride (TG) expression levels through the modulation of PI3K/SIRT-1/FAS/CEBP-α signaling pathway. This study provides a promising strategy for a highly hepatic-targeted therapy to ameliorate lipid accumulation using natural medicines facilitated by nano-technology.


Assuntos
Morus , Nanopartículas , Luteolina/farmacologia , Muramidase , Polissacarídeos/farmacologia , Nanopartículas/química , Lipídeos
8.
Neurochem Int ; 169: 105591, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37543309

RESUMO

Diabetic cognitive impairment (DCI) is a complex complication of diabetes in the central nervous system, and its pathological mechanism is still being explored. Astrocytes are abundant glial cells in central nervous system that perform diverse functions in health and disease. Accumulating excellent research has identified astrocyte dysfunction in many neurodegenerative diseases (such as Alzheimer's disease, aging and Parkinson's disease), and summarized and discussed its pathological mechanisms and potential therapeutic value. However, the contribution of astrocytes to DCI has been largely overlooked. In this review, we first systematically summarized the effects and mechanisms of diabetes on brain astrocytes, and found that the diabetic environment (such as hyperglycemia, advanced glycation end products and cerebral insulin resistance) mediated brain reactive astrogliosis, which was specifically reflected in the changes of cell morphology and the remodeling of signature molecules. Secondly, we emphasized the contribution and potential targets of reactive astrogliosis to DCI, and found that reactive astrogliosis-induced increased blood-brain barrier permeability, glymphatic system dysfunction, neuroinflammation, abnormal cell communication and cholesterol metabolism dysregulation worsened cognitive function. In addition, we summarized effective strategies for treating DCI by targeting astrocytes. Finally, we discuss the application of new techniques in astrocytes, including single-cell transcriptome, in situ sequencing, and prospected new functions, new subsets and new targets of astrocytes in DCI.


Assuntos
Disfunção Cognitiva , Diabetes Mellitus , Humanos , Astrócitos/metabolismo , Gliose/metabolismo , Encéfalo/patologia , Diabetes Mellitus/metabolismo , Inflamação/metabolismo , Disfunção Cognitiva/metabolismo
9.
Acta Pharm Sin B ; 13(7): 2817-2825, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37521866

RESUMO

Cognitive dysfunction is one of the common central nervous systems (CNS) complications of diabetes mellitus, which seriously affects the quality of life of patients and results in a huge economic burden. The glymphatic system dysfunction mediated by aquaporin-4 (AQP4) loss or redistribution in perivascular astrocyte endfeet plays a crucial role in diabetes-induced cognitive impairment (DCI). However, the mechanism of AQP4 loss or redistribution in the diabetic states remains unclear. Accumulating evidence suggests that peripheral insulin resistance target tissues and CNS communication affect brain homeostasis and that exosomal miRNAs are key mediators. Glucose and lipid metabolism disorder is an important pathological feature of diabetes mellitus, and skeletal muscle, liver and adipose tissue are the key target insulin resistance organs. In this review, the changes in exosomal miRNAs induced by peripheral metabolism disorders in diabetes mellitus were systematically reviewed. We focused on exosomal miRNAs that could induce low AQP4 expression and redistribution in perivascular astrocyte endfeet, which could provide an interorgan communication pathway to illustrate the pathogenesis of DCI. Furthermore, the mechanisms of exosome secretion from peripheral insulin resistance target tissue and absorption to the CNS were summarized, which will be beneficial for proposing novel and feasible strategies to optimize DCI prevention and/or treatment in diabetic patients.

10.
J Infect Dis ; 228(9): 1154-1165, 2023 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-37246562

RESUMO

BACKGROUND: Pulmonary tuberculosis (PTB) and lung cancer (LC) have similar clinical symptoms and atypical imaging findings, which are easily misdiagnosed. There is an urgent need for a noninvasive and accurate biomarker to distinguish LC from PTB. METHODS: A total of 694 subjects were enrolled and divided into discovery set (n = 122), identification set (n = 214), and validation set (n = 358). Metabolites were identified by multivariate and univariate analyses. Receiver operating characteristic curve were used to evaluate the diagnostic efficacy of biomarkers. RESULTS: Seven metabolites were identified and validated. Phenylalanylphenylalanine for distinguishing LC from PTB yielded an area under the curve of 0.89, sensitivity of 71%, and specificity of 92%. It also showed good diagnostic abilities in discovery set and identification set. Compared with that in healthy volunteers (median [interquartile range], 1.57 [1.01, 2.34] µg/mL), it was elevated in LC (4.76 [2.74, 7.08] µg/mL; ratio of median, [ROM] = 3.03, P < .01) and reduced in PTB (1.06 [0.51, 2.09] µg/mL; ROM = 0.68, P < .05). CONCLUSIONS: The metabolomic profile of LC and PTB was described and a key biomarker identified. We produced a rapid and noninvasive method to supplement existing clinical diagnostic examinations for distinguishing LC from PTB.


Assuntos
Neoplasias Pulmonares , Tuberculose Pulmonar , Humanos , Neoplasias Pulmonares/diagnóstico , Biomarcadores , Tuberculose Pulmonar/diagnóstico , Metabolômica/métodos , Curva ROC
11.
Phytochem Anal ; 34(5): 580-593, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37226600

RESUMO

BACKGROUND: The quality control of traditional Chinese medicine (TCM) is one of the main topics in TCM modernisation research. To date, the overwhelming majority of research has focused on chemical ingredients in the quality control of TCM. However, detecting a single or multiple chemical components cannot fully demonstrate the specificity and correlation between quality and efficacy. PURPOSE: To solve the problem that the association between quality control and efficacy is lacking. The present study was designed to establish a methodology for quality control based on quality biomarkers (Q-biomarkers) and the vasodilatation efficacy of compound DanShen dripping pills (CDDP) as a case. METHODS: Guided by the basic principles of Q-biomarkers, the compounds in TCM were determined by ultra-performance liquid chromatography quadrupole time-of-flight mass spectrometry. Predicted targets were screened through network pharmacology. The potential Q-biomarkers were further screened through proteomics and partial least squares regression analysis. The protein-protein interaction network that combines both predicted targets and potential Q-biomarkers was constructed to screen Q-biomarkers. RESULTS: There were 32 components and 79 predictive targets for CDDP. Proteomic results indicated that the expression of 23 differential proteins changed as pharmacodynamic and componential changes. CPSF6, RILP11, TMEM209, COQ7, VPS18, PPPP1CA, NF2, and ARFRP1 highly correlated with vasodilation. Protein interaction network analysis showed that NF2 and PPPP1CA were closely related to predicted proteins. Thus, NF2 and PPPP1CA could be considered as Q-biomarkers of CDDP. CONCLUSION: Our preliminary study suggested the feasibility of the Q-biomarkers theory in the quality of TCM. The concept of Q-biomarkers provided a powerful method to strengthen the link between clinical efficacy and the quality of TCM. In conclusion, a novel, more scientific, and standard quality control method was established in this study.


Assuntos
Medicamentos de Ervas Chinesas , Medicina Tradicional Chinesa , Medicina Tradicional Chinesa/métodos , Proteômica , Medicamentos de Ervas Chinesas/química , Biomarcadores/análise
12.
Food Sci Biotechnol ; 32(7): 911-920, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37123069

RESUMO

Ginger (Zingiber officinale) is one of the most widely consumed dietary supplements. However, the content of active ingredients varied greatly from place to place. In this study, we first identified and compared the compositions of ginger samples from six different origins. Then, we evaluated the anti-inflammatory activity of different samples in LPS-stimulated RAW264.7 cells. The results indicated that highly variable in chemical composition and activity for ginger from different origin. Further, correlation analysis showed that isoborneol, terpineol, α-curcumene, germacrene D, α-elemol and 8-shogaol exhibited a strong correlation with inflammatory factors, which could be used as potential chemical markers to evaluate quality and distinguish source of ginger. Finally, comprehensive evaluation found that the ginger from Sichuan exerts stronger anti-inflammatory properties. This study will help to select ginger varieties with excellent characteristics, provide theoretical basis for the development and utilization of ginger. Supplementary Information: The online version contains supplementary material available at 10.1007/s10068-022-01229-2.

13.
Zhongguo Zhong Yao Za Zhi ; 48(3): 835-840, 2023 Feb.
Artigo em Chinês | MEDLINE | ID: mdl-36872248

RESUMO

"Taking drugs for a long term" is a qualitative expression of medication method based on the efficacy and safety of Chinese medicine, and the study on it is conducive to the full utilization of the efficacy and rational use of drugs. There are 148 drugs that can be taken for a long time recorded in Shen Nong's Classic of Materia Medica, accounting for 41% of the total drugs. This paper analyzed three-grade classification, natural qualities, four properties and five flavors, and efficacy features of the "long-term taking" drugs(LTTD), thus exploring the herbal source of traditional Chinese medicine health care and the rationality of effect accumulation by long-term taking. It was found that there were more than 110 top-grade LTTD in Shen Nong's Classic of Materia Medica, most of which were herbs, with sweet flavor, flat property, and no toxicity. The efficacies were mainly making body feel light and agile(Qingshen) and prolonging life. Eighty-three LTTD were included in the Chinese Pharmacopoeia(2020 edition). In the modern classification, tonic LTTD accounted for the most, followed by damp-draining diuretic LTTD and exterior-releasing LTTD. Twenty LTTD were included in the "List of Medicinal and Edible Products" and 21 were in the "List of Products Used for Health-care Food", involving in various modern health care effects, such as enhancing immunity, assisting in reducing blood lipids, and anti-oxidation. Shen Nong's Classic of Materia Medica is the classic source of traditional Chinese medicine health care, and its medication thought of taking drugs for a long term to accumulate effects has guiding significance for the regulation of sub-health and chronic diseases nowadays. The efficacy and safety of LTTD have been examined in practice for a long time, and some of the drugs are edible, which is unique in the whole cycle of health-care service, especially in line with the health-care needs in the aging society under the concept of Big Health. However, some records in the book are limited by the understanding of the times, which should be scientifically studied according to the Chinese Pharmacopoeia and the related regulations and technical requirements, under the attitude of eliminating falsifications and preserving the truth and keeping the right essence, so as to achieve further improvement, innovation, and development.


Assuntos
Materia Medica , Medicina Tradicional Chinesa , Humanos , Atenção à Saúde
14.
J Ethnopharmacol ; 311: 116346, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-36898448

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: The pathogenesis of pulmonary infection secondary to severe traumatic brain injury (sTBI) is closely related to damage to the intestinal barrier. Lizhong decoction (LZD) is a prominent traditional Chinese medicine (TCM) that is widely used in clinical treatment to regulate gastrointestinal movement and enhance resistance. Nevertheless, the role and mechanism of LZD in lung infection secondary to sTBI have yet to be elucidated. AIM OF THE STUDY: Here, we evaluate the therapeutic effect of LZD on pulmonary infection secondary to sTBI in rats and discuss potential regulatory mechanisms. MATERIALS AND METHODS: The chemical constituents of LZD were analyzed by ultra-high performance liquid chromatography-Q Exactive-tandem mass spectrometry(UPLC-QE-MS/MS). The efficacy of LZD on rats with lung infection secondary to sTBI was examined by changes in brain morphology, coma time, brain water content, mNSS score, colony counts, 16S rRNA/RNaseP/MRP30 kDa(16S/RPP30), myeloperoxidase (MPO) content and pathology of lung tissue. The concentration of fluorescein isothiocyanate(FITC)-dextran in serum and the contents of secretory immunoglobulin A (SIgA) in colon tissue were detected by enzyme-linked immunosorbent assay (ELISA). Subsequently, Alcian Blue Periodic acid Schiff (AB-PAS) was used to detect colonic goblet cells. Immunofluorescence (IF) was used to detect the expression of tight junction proteins. The proportions of CD3+ cell, CD4+CD8+ T cells, CD45+ cell and CD103+ cells in the colon were analyzed by flow cytometry (FC). In addition, colon transcriptomics were analyzed by Illumina mRNA-Seq sequencing. Real-time quantitative polymerase chain reaction (qRT‒PCR) was used to verify the genes associated with LZD alleviation of intestinal barrier function. RESULTS: Twenty-nine chemical constituents of LZD were revealed with UPLC-QE-MS/MS analysis. Administration of LZD significantly reduced colony counts, 16S/RPP30 and MPO content in lung infection secondary to sTBI rats. In addition, LZD also reduced the serum FITC-glucan content and the SIgA content of the colon. Additionally, LZD significantly increased the number of colonic goblet cells and the expression of tight junction proteins. Furthermore, LZD significantly decreased the proportion of CD3+ cell, CD4+CD8+ T cells,CD45+ and CD103+ cells in colon tissue. Transcriptomic analysis identified 22 upregulated genes and 56 downregulated genes in sTBI compared to the sham group. The levels of seven genes were recovered after LZD treatment. qRT‒PCR successfully validated two genes (Jchain and IL-6) at the mRNA level. CONCLUSION: LZD can improves sTBI secondary lung infection by regulating the intestinal physical barrier and immune response. Thees results suggested that LZD may be a prospective treatment for pulmonary infection secondary to sTBI.


Assuntos
Lesões Encefálicas Traumáticas , Medicamentos de Ervas Chinesas , Pneumonia , Ratos , Animais , Espectrometria de Massas em Tandem , Fluoresceína-5-Isotiocianato , Linfócitos T CD8-Positivos , RNA Ribossômico 16S , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Imunidade , RNA Mensageiro , Proteínas de Junções Íntimas
15.
J Ethnopharmacol ; 303: 115949, 2023 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-36435408

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Clerodendranthus spicatus is a traditional Chinese medicine and has been used to treat diabetes and some kidney diseases for a long history. AIM OF THE STUDY: The research aimed to study the active constituents, the potential targets and the related mechanisms of C. spicatus in the treatment of diabetes through network pharmacology method and verify the antidiabetic activity by molecular biology experiments. MATERIALS AND METHODS: A comprehensive network pharmacology strategy was used to predict the key active constituents, the key targets and the related mechanisms and pathways of C. spicatus in the treatment of diabetes. The strategy mainly included screening and predicting potential active constituents and targets by network construction, GO (Gene Ontology) and KEGG (Kyoto Encyclopedia of Genes and Genomes) enrichment analysis. Based on the predicted results, C. spicatus was extracted by ultrasonic method with 50% ethanol and enriched by using macroporous resin. The compounds with potential antidiabetic effects were separated through silica-gel column chromatography and HPLC (high performance liquid chromatography), and then identified by MS (mass spectrum) and NMR (nuclear magnetic resonance). The C. spicatus extract and isolated compounds were tested by in-vitro and cell experiments to verify their antidiabetic activities, including antioxidant activities, inhibition activities on α-glucosidase and α-amylase, the influence on glucose uptake in cell experiments and the Western blot of PI3K and Akt expression levels. RESULTS: A total of 18 active constituents and 16 key targets of C. spicatus in the treatment of diabetes were screened out through network pharmacology method. Phenolic acids might be the main target compounds for the next research. After extraction, enrichment and separation, the phenolic acids-enriched fraction of C. spicatus and four phenolic acid compounds (helisterculin C, salvianolic acid B, orthosiphoic acid E and ethyl caffeate) were obtained. Among them, salvianolic acid B was isolated from C. spicatus for the first time and orthosiphoic acid E was isolated from natural products for the first time. In experiment verification, the crude extract of C. spicatus, the phenolic acids-enriched fraction and the four compounds all showed antidiabetic potentials. The phenolic acids in C. spicatus had antioxidant activities, inhibitory activities on α-amylase and α-glucosidase and promoted glucose uptake in L6 cells through PI3K/Akt signaling pathway. CONCLUSIONS: This study showed that C. spicatus had antidiabetic activities with the mechanism of the mode of multi-compounds acting on multi-targets and multi-pathways. The main active phenolic acid compounds were also identified. It provided theoretical basis for further development and utilization of C. spicatus.


Assuntos
Diabetes Mellitus , Medicamentos de Ervas Chinesas , Humanos , alfa-Glucosidases/metabolismo , Antioxidantes , Proteínas Proto-Oncogênicas c-akt , Farmacologia em Rede , Fosfatidilinositol 3-Quinases , Hipoglicemiantes/farmacologia , Hipoglicemiantes/uso terapêutico , Hipoglicemiantes/química , Glucose , alfa-Amilases , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicamentos de Ervas Chinesas/química , Simulação de Acoplamento Molecular
16.
Eur J Pharmacol ; 933: 175260, 2022 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-36116517

RESUMO

It has been increasingly accepted that Multi-Ingredient-Based interventions provide advantages over single-target therapy for complex diseases. With the growing development of Traditional Chinese Medicine (TCM) and continually being refined of a holistic view, "multi-target" and "multi-pathway" integration characteristics of which are being accepted. However, its effector substances, efficacy targets, especially the combination rules and mechanisms remain unclear, and more powerful strategies to interpret the synergy are urgently needed. Artificial intelligence (AI) and computer vision lead to a rapidly expanding in many fields, including diagnosis and treatment of TCM. AI technology significantly improves the reliability and accuracy of diagnostics, target screening, and new drug research. While all AI techniques are capable of matching models to biological big data, the specific methods are complex and varied. Retrieves literature by the keywords such as "artificial intelligence", "machine learning", "deep learning", "traditional Chinese medicine" and "Chinese medicine". Search the application of computer algorithms of TCM between 2000 and 2021 in PubMed, Web of Science, China National Knowledge Infrastructure (CNKI), Elsevier and Springer. This review concentrates on the application of computational in herb quality evaluation, drug target discovery, optimized compatibility and medical diagnoses of TCM. We describe the characteristics of biological data for which different AI techniques are applicable, and discuss some of the best data mining methods and the problems faced by deep learning and machine learning methods applied to Chinese medicine.


Assuntos
Medicamentos de Ervas Chinesas , Inteligência Artificial , Simulação por Computador , Medicamentos de Ervas Chinesas/química , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Medicina Tradicional Chinesa , Reprodutibilidade dos Testes
17.
Front Pharmacol ; 13: 898360, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35910371

RESUMO

Background : Cognitive dysfunction is a critical complication of diabetes mellitus, and there are still no clinically approved drugs. Zi Shen Wan Fang (ZSWF) is an optimized prescription composed of Anemarrhenae Rhizoma, Phellodendri Chinensis Cortex, and Cistanches Herba. The purpose of this study is to investigate the effect of ZSWF on DCI and explore its mechanism from the perspective of maintaining intestinal microbial homeostasis in order to find an effective prescription for treating DCI. Methods: The diabetes model was established by a high-fat diet combined with intraperitoneal injections of streptozotocin (STZ, 120 mg/kg) and the DCI model was screened by Morris water maze (MWM) after 8 weeks of continuous hyperglycemic stimulation. The DCI mice were randomly divided into the model group (DCI), the low- and high-ZSWF-dose groups (9.63 g/kg, 18.72 g/kg), the mixed antibiotic group (ABs), and the ZSWF combined with mixed antibiotic group (ZSWF + ABs). ZSWF was administered orally once a day for 8 weeks. Then, cognitive function was assessed using MWM, neuroinflammation and systemic inflammation were analyzed by enzyme-linked immunosorbent assay kits, intestinal barrier integrity was assessed by hematoxylin-eosin (HE) staining and Western blot and high performance liquid chromatography tandem mass spectrometry (UPLC-MS/MS). Furthermore, the alteration to intestinal flora was monitored by 16S rDNA sequencing. Results: ZSWF restored cognitive function in DCI mice and reduced levels of proinflammatory cytokines such as IL-1ß, IL-6, and TNF-α. Moreover, ZSWF protected the integrity of the intestinal barrier by increasing intestinal ZO-1 and occludin protein expression and decreasing urinary lactulose to mannitol ratio. In addition, ZSWF reshaped the imbalanced gut microbiota in DCI mice by reversing the abundance changes of a wide range of intestinal bacteria at the phyla and genus levels. In contrast, removing gut microbiota with antibiotics partially eliminated the effects of ZSWF on improving cognitive function and reducing inflammation, confirming the essential role of gut microbiota in the improvement of DCI by ZSWF. Conclusion: ZSWF can reverse cognitive impairment in DCI mice by remolding the structure of destructed gut microbiota community, which is a potential Chinese medicine prescription for DCI treatment.

18.
Front Pharmacol ; 13: 876235, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35873558

RESUMO

Background and Purpose: Blood-brain barrier (BBB) disruption following ischemic stroke (IS) contributes to hemorrhagic transformation, brain edema, increased neural dysfunction, secondary injury, and mortality. The prevailing view attributes the destruction of tight junction proteins (TJs) to the resulting BBB damage following IS. However, recent studies define a stepwise impairment of the transcellular barrier followed by the paracellular barrier which accounts for the BBB leakage in IS. The increased endothelial transcytosis that has been proven to be caveolae-mediated, preceding and independent of TJs disintegration. Emerging experimental investigations suggested Storax attenuates BBB damage after stroke. This study aimed to test our hypothesis that Storax inhibits caveolae-mediated transcytosis at BBB after ischemic stroke in rats. Methods: Male Wistar rats (250-300 g) were subjected to transient middle cerebral artery occlusion (t-MCAO). Brain water content and the cerebral infarction size were assessed by brain tissue drying-wet method and 2,3,5-triphenyltetrazolium chloride (TTC) staining. BBB permeability was detected by the leakage of Evans blue and Albumin-Alexa594. The ultrastructure of BBB was examined by transmission electron microscopy (TEM). Cav-1 and Mfsd2a were quantified by western blotting and immunofluorescence staining, AQP4, PDGFR-ß, ZO-1 and Occludin were quantified by western blotting. Results: Storax treatment of 0.1 g/kg had no significant effects on brain lesions. Storax treatment of 0.2, 0.4, and 0.8 g/kg led to a significant decrease in infarction size, and the Storax 0.4, 0.8 g/kg groups displayed a significant reduction in brain water content. Storax treatment of 0.8 g/kg showed mild toxic reactions. Thus, 0.4 g/kg Storax was selected as the optimal dose for subsequent studies. Storax significantly inhibited the fluorescent albumin intensity in the brain parenchyma and the number of caveolae in ECs, alongside attenuating the ultrastructural disruption of BBB at 6 h after stroke. Meanwhile, Storax significantly increased the expression of Mfsd2a and PDGFR-ß, and decrease the expression of Cav-1 and AQP4, corresponding to the significantly decreased Cav-1 positive cells and increased Mfsd2a positive cells. However, Storax has no significant effects on Evan blue leakage or the expression ZO-1, Occludin. Conclusion: Our experimental findings demonstrate Storax treatment inhibits caveolae-mediated transcytosis at BBB in the focal stroke model of rats. We also speculate that regulation of Cav-1, Mfsd2a, AQP4, and PDGFR-ß expressions might be associated with its beneficial pharmacological effect, but remain to define and elucidate in future investigation.

19.
Front Pharmacol ; 13: 888684, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35677425

RESUMO

Lung infection is a common complication induced by stroke and seriously affects the prognosis and life quality of patients. However, effective therapeutic strategies are still lacking. In the present study, the herb formula GCis was confirmed to prevent pulmonary infection induced by intracerebral hemorrhage (ICH). The animal model of lung infection induced by ICH, GCis (Ginseng Radix et Rhizoma, Aconiti Lateralis Radix Praeparata, and Cistanches Herba) was orally administrated every day for 7 days. Lung microbial biomass and pathological results showed that the GCis formula pretreatment significantly reduced lung bacterial biomass and alleviated pathological abnormalities. These results indicated that the GCis formula has a clear pharmacological effect on preventing lung infection induced by ICH. Immunosuppression induced by ICH seemed to be the main mechanism of lung infection. Our results showed that the spleen and thymus indexes, WBC, and LY% contents were significantly increased in the GCis formula group. Moreover, bone marrow cells were further analyzed by transcriptome sequencing, and GO and KEGG enrichment analysis results showed that immune function was the main pathway enriched by differential genes after GCis formula intervention. More importantly, our results showed that GCis pretreatment had no significant effect on the mRNA expression of IL-1ß, IL-6, and TNF-α in the brain. These results indicated that the GCis formula could enhance immunity after ICH. The intestinal barrier function was further investigated in the present study, considering the origin of the source of infection. Our results showed that the mRNA expressions of intestinal ZO-1, SIgA, and MUC2 were significantly increased, villi structure was intact, inflammatory cell infiltration was reduced, and goblet cell number was increased after GCis formula treatment. These results suggest that the GCis formula can enhance the intestinal mucosal immune barrier. This study provides a herb formula (GCis) that could enhance peripheral immunity and intestinal mucosal immune barrier to prevent pulmonary infection induced by ICH. It would be beneficial in the prevention of severe clinical infections.

20.
Phytomedicine ; 99: 154000, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35235888

RESUMO

BACKGROUND: Cognitive dysfunction is commonly observed in diabetic patients, yet, the underlying mechanisms are obscure and there are no approved drugs. Skeletal muscle is a key pathological organ in diabetes. Evidence is accumulating that skeletal muscle and brain communication are important for cognitive, and kynurenine (KYN) metabolism is one of the mediators. PURPOSE: This study aims to elucidate the mechanism of diabetes-induced cognitive impairment (DCI) from the perspective of skeletal muscle and brain communication, and to explore the therapeutic effect of Zi Shen Wan Fang (ZSWF, a optimized prescription consists of Anemarrhenae Rhizoma (Anemarrhena asphodeloides Bge.), Phellodendri Chinensis Cortex (Phellodendron chinense Schneid.) and Cistanches Herba (Cistanche deserticola Y.C.Ma)), in order to provide new strategies for the prevention and treatment of DCI and preliminarily explore valuable drugs. METHODS: DCI was induced by intraperitoneal injection of streptozotocin (STZ) combined with a high-fat diet and treated with different dosage ZSWF extract by oral gavage for 8 weeks, once a day. Cognitive and skeletal muscle function was assessed, synaptic plasticity and L-type amino acid transporter (LAT1) was measured. KYN and its metabolites as well as metabolic enzymes in the hippocampus, peripheral blood and skeletal muscle were measured. Peroxisome proliferator-activated receptor-γ co-activator-1α (PGC-1α) and peroxisome proliferator-activated receptor α (PPARα) were measured in skeletal muscle. RESULTS: Compared with healthy mice, DCI mice not only showed decreased cognitive function and abnormal skeletal muscle function, but also showed imbalance of KYN metabolism in brain, circulating blood and skeletal muscle. Fortunately, ZSWF administration for 8 weeks notably attenuated the cognitive function, synaptic plasticity and skeletal muscle function in DCI mice. Besides, ZSWF significantly attenuated KYN metabolism in brain, circulation and skeletal muscle of DCI mice. Furthermore, ZSWF activated PGC1α-PPARα in skeletal muscle of DCI mice. CONCLUSIONS: These results indicate that abnormal PGC1α-PPARα signaling in skeletal muscle mediating KYN metabolism disorder is one of the pathological mechanisms of DCI, and ZSWF can reverse diabetes-induced cognitive impairment via activating skeletal muscle PGC1α-PPARα signaling to maintain KYN metabolism homeostasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA