Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Omega ; 8(49): 47123-47133, 2023 Dec 12.
Artigo em Inglês | MEDLINE | ID: mdl-38107925

RESUMO

Multidrug-resistant bacterial infections, especially those caused by multidrug-resistant Escherichia coli (E. coli) bacteria, are an ever-growing threat because of the shrinking arsenal of efficacious antibiotics. Therefore, it is urgently needed to develop a kind of novel, long-term antibacterial agent effectively overcome resistant bacteria. Herein, we present a novel designed antibacterial agent-6-Aza-2-thiothymine-capped gold nanoclusters (ATT-AuNCs), which show excellent antibacterial activity against multidrug-resistant E. coli bacteria. The prepared AuNCs could permeabilize into the bacterial cell membrane via binding with a bivalent cation (e.g., Ca2+), followed by the generation of reactive oxygen species (e.g., •OH and •O2-), ultimately resulting in protein leakage from compromised cell membranes, inducing DNA damage and upregulating pro-oxidative genes intracellular. The AuNCs also speed up the wound healing process without noticeable hemolytic activity or cytotoxicity to erythrocytes and mammalian tissue. Altogether, the results indicate the great promise of ATT-AuNCs for treating multidrug-resistant E. coli bacterial infection.

2.
Colloids Surf B Biointerfaces ; 226: 113336, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-37167770

RESUMO

The use of conventional antibiotic therapies is in question owing to the emergence of drug-resistant pathogenic bacteria. Therefore, novel, highly efficient antibacterial agents to effectively overcome resistant bacteria are urgently needed. Accordingly, in this work, we described a novel class luminogen of 6-Aza-2-thiothymine-decorated gold nanoclusters (ATT-AuNCs) with aggregation-induced emission property that possessed potent antimicrobial activity against methicillin-resistant Staphylococcus aureus (MRSA). Scanning electron microscopy was performed to investigate the interactions between ATT-AuNCs and MRSA. In addition, ATT-AuNCs exhibited excellent ROS generation efficiency and could effectively ablate MRSA via their internalization to the cells. Finally, tandem mass tag-labeling proteome analysis was carried out to investigate the differential expression proteins in MRSA strains. The results suggested that ATT-AuNCs killed MRSA cells through altering the expression of multiple target proteins involved in DNA replication, aminoacyl-tRNA synthesis, peptidoglycan and arginine biosynthesis metabolism. Parallel reaction monitoring technique was further used for the validation of these proteome results. ATT-AuNCs could also be served as a wound-healing agent and accelerate the healing process. Overall, we proposed ATT-AuNCs could serve as a robust antimicrobial aggregation-induced emission luminogen (AIEgen) that shows the ability to alter the activities of multiple targets for the elimination of drug-resistant bacteria.


Assuntos
Anti-Infecciosos , Staphylococcus aureus Resistente à Meticilina , Ouro/farmacologia , Proteoma , Anti-Infecciosos/farmacologia , Antibacterianos/farmacologia , Bactérias , Testes de Sensibilidade Microbiana
3.
Int J Nanomedicine ; 18: 1145-1158, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-36915699

RESUMO

Background: Drug-resistant microbes pose a global health concern, requiring the urgent development of effective antibacterial agents and strategies in clinical practice. Therefore, there is an urgent need to explore novel antibacterial materials to effectively eliminate bacteria. The synthesis of quaternary phosphonium salt in haloargentate systems, wherein the phosphorus atom is represented in a cationic form, is a possible strategy for the development of antibacterial materials. Methods: Using (triphenyl)phosphonium-based quaternary phosphorus salts with different spacer lengths (n=2, 4, 6) as a template, we designed three kinds of quaternary phosphorus salts as effective antibacterial agents against drug-resistant bacteria. Results: The synthesized quaternary phosphorus salt of (1,4-DBTPP)Br2 effectively prevented the formation of the bacterial biofilms, and degraded bacterial membranes and cell walls by promoting the production of reactive oxygen species, which exhibited effective therapeutic effects in a rat model of a superficial wound infected with methicillin-resistant Staphylococcus aureus. Conclusion: The quaternary phosphorus salt (1,4-DBTPP)Br2 demonstrated hemocompatibility and low toxicity, revealing its potential in the treatment of clinical infections.


Assuntos
Staphylococcus aureus Resistente à Meticilina , Ratos , Animais , Fósforo , Sais/farmacologia , Testes de Sensibilidade Microbiana , Antibacterianos/farmacologia , Cloreto de Sódio/farmacologia , Cicatrização
4.
Mikrochim Acta ; 189(4): 160, 2022 03 26.
Artigo em Inglês | MEDLINE | ID: mdl-35347452

RESUMO

Sensitive and rapid detection of pathogenic bacteria plays an important role in avoiding food poisoning. However, the practical application value of conventional assays for detection of foodborne bacteria, are limited by major drawbacks; these include the laboriousness of pure culture preparation, complexity of DNA extraction for polymerase chain reaction, and low sensitivity of enzyme-linked immunosorbent assay. Herein, we designed a non-complex strategy for the sensitive, quantitative, and rapid detection of Salmonella typhimurium with high specificity, using an anti-Salmonella typhimurium IgG-AuNC-based immunofluorescent-aggregation assay. Salmonella typhimurium was agglutinated with fluorescent anti-Salmonella typhimurium IgG-AuNC on a glass slide, and observed using a fluorescence microscope with photoexcitation and photoemission at 560 nm and 620 nm, respectively. Under optimized reaction conditions, the AuNC-based immunofluorescent-aggregation assay had a determination range between 7.0 × 103 and 3.0 × 108 CFU/mL, a limit of detection of 1.0 × 103 CFU/mL and an assay response time of 3 min. The technique delivered good results in assessing real samples.


Assuntos
Anticorpos Antibacterianos , Salmonella typhimurium , Ensaio de Imunoadsorção Enzimática , Imunoglobulina G , Reação em Cadeia da Polimerase
5.
Biosens Bioelectron ; 177: 112977, 2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33434779

RESUMO

Assays for detecting tetanus toxoid are of great significance to be applied in the research of the safety testing of tetanus vaccine. Currently, guinea pigs or mice are usually used to evaluate the toxicity in these assays. Herein, a facile and quick biomineralization process was carried out to generate tetanus human immunoglobulin G (Tet-IgG)-functionalized Au nanoclusters (Tet-IgG-AuNCs). The obtained Tet-IgG-AuNCs exhibited strong red emission with a photoluminescence quantum yield of 13%. Based on surface plasmon resonance measurements, the apparent dissociation constant of the Tet-IgG-AuNC-tetanus toxoid complexes was measured to be 2.27 × 10-8 M. A facile detection approach was developed using a fluorescent Tet-IgG-AuNC-based immunochromatography test strip. By utilizing the high-brightness fluorescent Tet-IgG-AuNCs, this immunosensor showed favorable sensitivity with a detection limit at the level of 0.03 µg/mL. Further results demonstrated that this assay can reliably detect tetanus toxoid and therefore might provide a novel method to replace animal tests for the quantification of tetanus toxicity. Moreover, the antibody-AuNC-based immunochromatography test strip platform serves as a promising candidate to develop new approaches for detecting targeted antigens and biological events of interest.


Assuntos
Técnicas Biossensoriais , Tétano , Animais , Cromatografia de Afinidade , Cobaias , Humanos , Imunoensaio , Imunoglobulina G , Camundongos , Toxoide Tetânico
6.
Spectrochim Acta A Mol Biomol Spectrosc ; 239: 118520, 2020 Oct 05.
Artigo em Inglês | MEDLINE | ID: mdl-32480270

RESUMO

Various types of bovine serum albumin (BSA)-protected fluorescent gold nanoclusters (BSA-AuNCs) have been fabricated and applied in various fields. However, the conventional synthesis methods for BSA-AuNCs usually yield a low photoluminescence quantum yield (PLQY) in solution. In this study, we systematically examined the influences of incubation time, temperature, and pH on the formation process of BSA-AuNCs and then developed a novel strategy to synthesize BSA-AuNCs with PLQY (26%), far exceeding that of existing counterparts. Of the three important factors, pH, temperature, and time, pH plays a key role in the formation of BSA-AuNCs with different compositions and fluorescence properties. The matrix-assisted laser desorption/ionization time-of-flight mass spectrometry (MALDI-TOF MS) results showed that BSA-Au20NCs with high purity can be produced at a pH value of 10 and the correct combination of incubation temperature and reaction time. The advantages of the obtained BSA-Au20NCs, including small size, high PLQY, long lifetime, high purity, as well as facile modification, make them ideal candidates for luminescent probes in imaging and sensing applications.

7.
Anal Chem ; 92(1): 1635-1642, 2020 01 07.
Artigo em Inglês | MEDLINE | ID: mdl-31834785

RESUMO

A visual assay for the detection of heparinase was developed on the basis of a ternary system of Hg2+-heparin-osmium nanoparticles (OsNPs). First, heparin-capped OsNPs (heparin-OsNPs) were synthesized by a facile reduction method using heparin as the protecting/stabilizing agent. The oxidase-like activity of heparin-OsNPs, however, turned out to be low, which somewhat limits their application. We discovered that Hg2+ can significantly/specifically boost the oxidase-like activity of heparin-OsNPs via electrostatic interaction. The oxidase-like activity of heparin-OsNPs toward the oxidation of the substrate, 3,3',5,5'-tetramethylbenzidine, by dissolved O2 was found to increase by 76-fold in the presence of Hg2+. More significantly, heparin in heparin-OsNPs could be specifically hydrolyzed into small fragments in the presence of heparinase, which resulted in the weakening of the oxidase-like activity of Hg2+/heparin-OsNPs. On the basis of these findings, a linear response of the sensor for heparinase was obtained in the range 20-1000 µg/L with a low detection limit (15 µg/L), which is comparable to those of other reported sensors. Further, the colorimetric sensor was employed for the detection of heparinase in human serum samples with satisfactory results. We speculate that combining such surface modification of the osmium nanozyme with a sensing element could be an interesting direction for promoting nanozyme research in medical diagnosis.


Assuntos
Heparina Liase/análise , Heparina/química , Mercúrio/química , Nanopartículas Metálicas/química , Osmio/química , Técnicas Biossensoriais , Heparina Liase/metabolismo , Humanos , Estrutura Molecular
8.
Chembiochem ; 21(7): 978-984, 2020 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-31657085

RESUMO

Although oxidase mimetic nanozymes have been widely investigated, specific biological molecules have rarely been explored as substrates, particularly in the case of ascorbate oxidase (AAO) mimetic nanozymes. Herein, we demonstrate for the first time that copper(II) oxide nanoparticles (CuO NPs) catalyze the oxidation of ascorbic acid (AA) by dissolved O2 (as a green oxidant) to form dehydroascorbic acid (DHAA), thus functioning as a new kind of AAO mimic. Under neutral conditions, the Michaelis-Menten constant of CuO NPs (0.1302 mm) is similar to that of AAO (0.0840 mm). Furthermore, the robustness of CuO NPs is greater than that of AAO, thus making them suitable for applications under various conditions. As a demonstration, a fluorescence AA sensor based on the AAO mimetic activity of CuO NPs was developed. To obtain a fluorescent product, o-phenylenediamine (OPDA) was used to react with the DHAA produced by the oxidation of AA catalyzed by CuO NPs. The developed sensor was cost-effective and easy to fabricate and exhibited high selectivity/sensitivity with a wide linear range (1.25×10-6 to 1.125×10-4 m) and a low detection limit (3.2×10-8 m). The results are expected to aid in expanding the applicability of oxidase mimetic nanozymes in a variety of fields such as biology, medicine, and detection science.


Assuntos
Materiais Biomiméticos/metabolismo , Cobre/química , Nanopartículas Metálicas/química , Ascorbato Oxidase/química , Ascorbato Oxidase/metabolismo , Ácido Ascórbico/química , Ácido Ascórbico/metabolismo , Materiais Biomiméticos/química , Catálise , Cinética , Oxirredução , Oxigênio/química , Oxigênio/metabolismo
9.
ACS Appl Mater Interfaces ; 11(35): 31729-31734, 2019 Sep 04.
Artigo em Inglês | MEDLINE | ID: mdl-31411018

RESUMO

Few-atom gold nanoclusters (AuNCs) have been fabricated and used for various fields owing to their remarkable optical and photophysical features. However, the rational design for the antibody-mediated synthesis of fluorescent AuNCs for direct antigen-antibody reactions remains unexplored. In this work, immunoglobulin G (IgG)-functionalized AuNCs (IgG-AuNCs) were successfully prepared via a facile and fast biomineralization process. The generated IgG-AuNCs can emit intense red fluorescence with a high photoluminescence quantum yield. Besides strong emission, the bioactivity of IgG on the IgG-AuNCs can be retained. Surface plasmon resonance measurements suggested that IgG-AuNCs can bind to goat anti-human IgG with an affinity constant of 6.21 × 10-8 M. A simple detection method was then developed using a dot-blot immunoassay with IgG-AuNCs as fluorescent tags. Experimental results confirmed that the IgG-AuNC-based fluorescent reporters had many advantages such as low nonspecific adsorption and good photostability, offering immense potential for the development of efficient biosensors. This work can be extended to other specific antibodies to produce multifunctional AuNCs and utilized to detect and monitor targeted analytes and biological events of interest.


Assuntos
Corantes Fluorescentes/química , Ouro/química , Immunoblotting , Imunoglobulina G/química , Nanopartículas Metálicas/química , Humanos
10.
Mikrochim Acta ; 185(8): 400, 2018 08 03.
Artigo em Inglês | MEDLINE | ID: mdl-30076470

RESUMO

Water-soluble and non-aggregating gold nanoclusters (AuNCs) were obtained by modification of the AuNCs with dithiothreitol (DTT) and then coating them with carboxylated chitosan. This process remarkably enhances the dispersibility of DTT-coated AuNCs in water. The resulting AuNCs, on photoexcitation at 285 nm, display strong red emission with a maximum at 650 nm and a 23% quantum yield. Fluorescence is strongly and selectively suppressed in the presence of 6-mercaptopurine (6-MP). Photoluminescence drops linearly in the 0.1-100 µM 6-MP concentration range, and the detection limit of this assay is 0.1 µM. Other features of the modified AuNCs include a decay time of 8.56 µs, a 365 nm Stokes shift, good colloidal stability, ease of chemical modification, and low toxicity. Conceivably, these NCs may find a range of applications in biological imaging and optical sensing. Graphical abstract Highly fluorescent and water-soluble gold nanoclusters (AuNCs) were obtained by modification of the AuNCs with dithiothreitol (DTT) and then coating them with carboxylated chitosan (CC). The resulting CC/DTT-AuNCs were used for sensitive and selective detection of 6-mercaptopurine.


Assuntos
Quitosana/química , Ditiotreitol/química , Corantes Fluorescentes/química , Ouro/química , Mercaptopurina/análise , Nanoestruturas/química , Água/química , Fluorometria , Imunossupressores/análise , Imunossupressores/química , Limite de Detecção , Mercaptopurina/química , Solubilidade
11.
Nanoscale ; 10(14): 6467-6473, 2018 Apr 05.
Artigo em Inglês | MEDLINE | ID: mdl-29568837

RESUMO

Luminescent copper nanoclusters (CuNCs) constitute a very active research topic due to their unique properties and lower cost than gold and silver NCs. In this study, we report a new, facile, and rapid top-down etching method for synthesizing luminescent CuNCs, using Cu nanoparticles (CuNPs) as the precursor and ammonia (NH3) as the etchant. The etching mechanism is systematically investigated and the optical and structural properties of the obtained CuNCs are carefully studied. The NH3-triggered etching process is very fast and the newly generated CuNCs can emit strong green fluorescence with a high quantum yield. Moreover, by coupling the urease-catalyzed hydrolysis of urea with the NH3-induced etching of CuNPs, we developed a novel fluorescence turn-on assay for urea. The linear range for urea detection is from 0.25 to 5 mM, and the limit of detection is 0.01 mM. This novel sensing approach, with good sensitivity and excellent selectivity, is then successfully utilized to detect urea in human serum samples, demonstrating its great potential in clinical diagnosis. In addition, the proposed coupling method can be extended to monitor other analytes that influence the size-focusing etching process, allowing metal NCs to be used to construct diverse chemosensors and biosensors.

12.
ACS Appl Mater Interfaces ; 10(6): 5358-5364, 2018 Feb 14.
Artigo em Inglês | MEDLINE | ID: mdl-29373021

RESUMO

The development of simple yet powerful methods for monitoring enzyme activity is of great significance. Herein, a facile, convenient, cost-effective, and continuous fluorescent method for the detection of arginase and its inhibitor has been reported based on a host-guest interaction-controlled and enzymatic hydrolysis-controlled luminescent nanoswitch. The fluorescence intensity of 6-aza-2-thiothymine-stabilized gold nanoparticle (ATT-AuNP) is enhanced by l-arginine, owing to the formation of a supramolecular host-guest assembly between the guanidine group of l-arginine and ATT molecules capped on the AuNP surface. However, hydrolysis of l-arginine, catalyzed by arginase, leads to a decrease in the fluorescence intensity of l-arginine/ATT-AuNPs hybrids. Upon incorporation of the arginase inhibitor l-norvaline, the fluorescence of the ATT-AuNP-based detecting system is restored. The linear range of arginase activity determination is from 0.0625 to 1.15 U/mL and the limit of detection is 0.056 U/mL. The half-maximal inhibition value IC50 of l-norvaline is determined to be 5.6 mM. The practicability of this luminescent nanoswitch is validated by assaying the arginase activity in rat liver and monitoring the response of rat liver arginase to pharmacological agent. Compared to the existing fluorescent method of arginase activity assay, the approach demonstrated here does not involve any complicated technical manipulation, thereby greatly simplifying the detection steps. We propose that this AuNP-based luminescent nanoswitch would find wide applications in the field of life sciences and medicine.


Assuntos
Nanopartículas Metálicas , Animais , Arginase , Arginina , Ouro , Hidrólise , Luminescência , Ratos
13.
Int J Nanomedicine ; 12: 3295-3302, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28458547

RESUMO

Dendrite-like cobalt selenide nanostructures were synthesized from cobalt and selenium powder precursors by a solvothermal method in anhydrous ethylenediamine. The as-prepared nanocrystalline cobalt selenide was found to possess peroxidase-like activity that could catalyze the reaction of peroxidase substrates in the presence of H2O2. A spectrophotometric method for uric acid (UA) determination was developed based on the nanocrystalline cobalt selenide-catalyzed coupling reaction between N-ethyl-N-(3-sulfopropyl)-3-methylaniline sodium salt and 4-aminoantipyrine (4-AAP) in the presence of H2O2. Under optimum conditions, the absorbance was proportional to the concentration of UA over the range of 2.0-40 µM with a detection limit of 0.5 µM. The applicability of the proposed method has been validated by determination of UA in human serum samples with satisfactory results.


Assuntos
Cobalto/química , Nanopartículas Metálicas/química , Espectrofotometria/métodos , Ácido Úrico/sangue , Ampirona/química , Análise Química do Sangue/métodos , Catálise , Humanos , Peróxido de Hidrogênio/química , Limite de Detecção , Nanoestruturas/química , Peroxidase , Peroxidases/química , Peroxidases/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA