Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
World J Gastrointest Surg ; 16(6): 1791-1802, 2024 Jun 27.
Artigo em Inglês | MEDLINE | ID: mdl-38983329

RESUMO

BACKGROUND: Metastatic colorectal cancer (mCRC) is a common malignancy whose treatment has been a clinical challenge. Cancer-specific survival (CSS) plays a crucial role in assessing patient prognosis and treatment outcomes. However, there is still limited research on the factors affecting CSS in mCRC patients and their correlation. AIM: To predict CSS, we developed a new nomogram model and risk grading system to classify risk levels in patients with mCRC. METHODS: Data were extracted from the United States Surveillance, Epidemiology, and End Results database from 2018 to 2023. All eligible patients were randomly divided into a training cohort and a validation cohort. The Cox proportional hazards model was used to investigate the independent risk factors for CSS. A new nomogram model was developed to predict CSS and was evaluated through internal and external validation. RESULTS: A multivariate Cox proportional risk model was used to identify independent risk factors for CSS. Then, new CSS columns were developed based on these factors. The consistency index (C-index) of the histogram was 0.718 (95%CI: 0.712-0.725), and that of the validation cohort was 0.722 (95%CI: 0.711-0.732), indicating good discrimination ability and better performance than tumor-node-metastasis staging (C-index: 0.712-0.732). For the training set, 0.533, 95%CI: 0.525-0.540; for the verification set, 0.524, 95%CI: 0.513-0.535. The calibration map and clinical decision curve showed good agreement and good potential clinical validity. The risk grading system divided all patients into three groups, and the Kaplan-Meier curve showed good stratification and differentiation of CSS between different groups. The median CSS times in the low-risk, medium-risk, and high-risk groups were 36 months (95%CI: 34.987-37.013), 18 months (95%CI: 17.273-18.727), and 5 months (95%CI: 4.503-5.497), respectively. CONCLUSION: Our study developed a new nomogram model to predict CSS in patients with synchronous mCRC. In addition, the risk-grading system helps to accurately assess patient prognosis and guide treatment.

2.
Regen Ther ; 24: 617-629, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38034857

RESUMO

Introduction: Bones are easily damaged. Biomimetic scaffolds are involved in tissue engineering. This study explored polydopamine (PDA)-coated poly lactic-co-glycolic acid (PLGA)-magnesium oxide (MgO) scaffold properties and its effects on bone marrow mesenchymal stem cells (BMSCs) osteogenic differentiation. Methods: PLGA/MgO scaffolds were prepared by low-temperature 3D printing technology and PDA coatings were prepared by immersion method. Scaffold structure was observed by scanning electron microscopy with an energy dispersive spectrometer (SEM-EDS), fourier transform infrared spectrometer (FTIR). Scaffold hydrophilicity, compressive/elastic modulus, and degradation rates were analyzed by water contact angle measurement, mechanical tests, and simulated-body fluid immersion. Rat BMSCs were cultured in scaffold extract. Cell activity on days 1, 3, and 7 was detected by MTT. Cells were induced by osteogenic differentiation, followed by evaluation of alkaline phosphatase (ALP) activity on days 3, 7, and 14 of induction and Osteocalcin, Osteocalcin, and Collagen I expressions. Results: The prepared PLGA/MgO scaffolds had dense microparticles. With the increase of MgO contents, the hydrophilicity was enhanced, scaffold degradation rate was accelerated, magnesium ion release rate and scaffold extract pH value were increased, and cytotoxicity was less when magnesium mass ratio was less than 10%. Compared with other scaffolds, compressive and elastic modulus of PLGA/MgO (10%) scaffolds were increased; BMSCs incubated with PLGA/MgO (10%) scaffold extract had higher ALP activity and Osteocalcin, Osteopontin, and Collagen I expressions. PDA coating was prepared in PLGA/MgO (10%) scaffolds and the mechanical properties were not affected. PLGA/MgO (10%)/PDA scaffolds had better hydrophilicity and biocompatibility and promoted BMSC osteogenic differentiation. Conclusion: Low-temperature 3D printing PLGA/MgO (10%)/PDA scaffolds had good hydrophilicity and biocompatibility, and were conducive to BMSC osteogenic differentiation.

3.
Biomaterials ; 300: 122179, 2023 09.
Artigo em Inglês | MEDLINE | ID: mdl-37315386

RESUMO

Oxygenating biomaterials can alleviate anoxic stress, stimulate vascularization, and improve engraftment of cellularized implants. However, the effects of oxygen-generating materials on tissue formation have remained largely unknown. Here, we investigate the impact of calcium peroxide (CPO)-based oxygen-generating microparticles (OMPs) on the osteogenic fate of human mesenchymal stem cells (hMSCs) under a severely oxygen deficient microenvironment. To this end, CPO is microencapsulated in polycaprolactone to generate OMPs with prolonged oxygen release. Gelatin methacryloyl (GelMA) hydrogels containing osteogenesis-inducing silicate nanoparticles (SNP hydrogels), OMPs (OMP hydrogels), or both SNP and OMP (SNP/OMP hydrogels) are engineered to comparatively study their effect on the osteogenic fate of hMSCs. OMP hydrogels associate with improved osteogenic differentiation under both normoxic and anoxic conditions. Bulk mRNAseq analyses suggest that OMP hydrogels under anoxia regulate osteogenic differentiation pathways more strongly than SNP/OMP or SNP hydrogels under either anoxia or normoxia. Subcutaneous implantations reveal a stronger host cell invasion in SNP hydrogels, resulting in increased vasculogenesis. Furthermore, time-dependent expression of different osteogenic factors reveals progressive differentiation of hMSCs in OMP, SNP, and SNP/OMP hydrogels. Our work demonstrates that endowing hydrogels with OMPs can induce, improve, and steer the formation of functional engineered living tissues, which holds potential for numerous biomedical applications, including tissue regeneration and organ replacement therapy.


Assuntos
Células-Tronco Mesenquimais , Osteogênese , Humanos , Diferenciação Celular , Engenharia Tecidual/métodos , Hidrogéis/farmacologia , Hipóxia/metabolismo , Oxigênio/metabolismo
4.
Adv Clin Exp Med ; 32(5): 551-561, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36881365

RESUMO

BACKGROUND: Bone mesenchymal stem cell (BMSC)-derived exosomes (B-exos) are attractive for applications in enabling alloantigen tolerance. An in-depth mechanistic understanding of the interaction between B-exos and dendritic cells (DCs) could lead to novel cell-based therapies for allogeneic transplantation. OBJECTIVES: To examine whether B-exos exert immunomodulatory effects on DC function and maturation. MATERIAL AND METHODS: After mixed culture of BMSCs and DCs for 48 h, DCs from the upper layer were collected to analyze the expression levels of surface markers and mRNAs of inflammation-related cytokines. Then, before being collected to detect the mRNA and protein expression levels of indoleamine 2,3-dioxygenase (IDO), the DCs were co-cultured with B-exos. Then, the treated DCs from different groups were co-cultured with naïve CD4+ T cells from the mouse spleen. The proliferation of CD4+ T cells and the proportion of CD4+CD25+Foxp3+ T cells were analyzed. Finally, the skins of BALB/c mice were transplanted to the back of C57 mice in order to establish a mouse allogeneic skin transplantation model. RESULTS: The co-culture of DCs with BMSCs downregulated the expression of the major histocompatibility complex class II (MHC-II) and CD80/86 costimulatory molecules on DCs. Moreover, B-exos increased the expression of IDO in DCs treated with lipopolysaccharide (LPS). The proliferation of CD4+CD25+Foxp3+ T cells increased when cultured with B-exos-exposed DCs. Finally, mice recipients injected with B-exos-treated DCs had significantly prolonged survival after receiving the skin allograft. CONCLUSIONS: Taken together, these data suggest that the B-exos suppress the maturation of DCs and increase the expression of IDO, which might shed light on the role of B-exos in inducing alloantigen tolerance.


Assuntos
Exossomos , Células-Tronco Mesenquimais , Camundongos , Animais , Exossomos/metabolismo , Transplante Homólogo , Células Dendríticas , Fatores de Transcrição Forkhead/metabolismo , Células da Medula Óssea
5.
PeerJ ; 10: e13744, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36168439

RESUMO

Background: In the bone marrow microenvironment of postmenopausal osteoporosis (PMOP), bone marrow mesenchymal stem cell (BMSC)-derived exosomal miRNAs play an important role in bone formation and bone resorption, although the pathogenesis has yet to be clarified. Methods: BMSC-derived exosomes from ovariectomized rats (OVX-Exo) and sham-operated rats (Sham-Exo) were co-cultured with bone marrow-derived macrophages to study their effects on osteoclast differentiation. Next-generation sequencing was utilized to identify the differentially expressed miRNAs (DE-miRNAs) between OVX-Exo and Sham-Exo, while target genes were analyzed using bioinformatics. The regulatory effects of miR-27a-3p and miR-196b-5p on osteogenic differentiation of BMSCs and osteoclast differentiation were verified by gain-of-function and loss-of-function analyses. Results: Osteoclast differentiation was significantly enhanced in the OVX-Exo treatment group compared to the Sham-Exo group. Twenty DE-miRNAs were identified between OVX-Exo and Sham-Exo, among which miR-27a-3p and miR-196b-5p promoted the expressions of osteogenic differentiation markers in BMSCs. In contrast, knockdown of miR-27a-3p and miR-196b-5p increased the expressions of osteoclastic markers in osteoclast. These 20 DE-miRNAs were found to target 11435 mRNAs. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes pathway analyses revealed that these target genes were involved in several biological processes and osteoporosis-related signaling pathways. Conclusion: BMSC-derived exosomal miR-27a-3p and miR-196b-5p may play a positive regulatory role in bone remodeling.


Assuntos
Remodelação Óssea , Células-Tronco Mesenquimais , MicroRNAs , Animais , Ratos , Reabsorção Óssea/metabolismo , Diferenciação Celular/genética , Células-Tronco Mesenquimais/fisiologia , MicroRNAs/genética , Osteogênese/genética , Feminino , Remodelação Óssea/genética , Exossomos/genética
6.
Biomater Adv ; 133: 112619, 2022 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-35034816

RESUMO

Integration of biological factors and hierarchical rigid scaffolds is of great interest in bone tissue engineering for fabrication of biomimetic constructs with high physical and biological performance for enhanced bone repair. Core/shell microspheres (CSMs) delivering bone morphogenetic protein-2 (BMP-2) and a strategy to integrate CSMs with 3D-printed scaffolds were developed herein to form a hybrid 3D system for bone repair. The scaffold was printed with polycaprolactone (PCL) and then coated with polydopamine. Shells of CSMs were electrosprayed with alginate. Cores were heparin-coated polylactic acid (PLA) microparticles fabricated via simple emulsion and heparin coating strategy. Assembly of microspheres and scaffolds was realized via a self-locking method with the assistance of controlled expansion of CSMs. The hybrid system was evaluated in the rat critical-sized bone defect model. CSMs released BMP-2 in a tunable manner and boosted osteogenic performance in vitro. CSMs were then successfully integrated inside the scaffolds. The assembled system effectively promoted osteogenesis in vitro and in vivo. These observations show the importance of how BMP-2 is delivered, and the core/shell microspheres represent effective BMP-2 carriers that could be integrated into scaffolds, together forming a hybrid system as a promising candidate for enhanced bone regeneration.


Assuntos
Impressão Tridimensional , Alicerces Teciduais , Animais , Heparina , Microesferas , Poliésteres , Ratos
7.
World Neurosurg ; 160: e372-e380, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35026455

RESUMO

BACKGROUND: The most common complication of oblique lumbar interbody fusion (OLIF) is endplate fracture/subsidence. The aim of this study was to evaluate biomechanical stability in patients undergoing OLIF surgery with anterolateral screw fixation (ASF). METHODS: Based on a previously validated model technique, L4-L5 functional surgical models corresponding to the ASF and bilateral pedicle screw fixation (BPSF) methods were created. Finite element models were developed to compare the biomechanics of the ASF and BPSF groups. We retrospectively analyzed 18 patients with lumbar degenerative diseases who underwent OLIF with ASF in Shenzhen Hospital of Southern Medical University from April 2020 to April 2021. Intraoperative and postoperative complications were observed. RESULTS: Compared with the BPSF model, the maximum stresses of the L4 inferior endplate and L5 superior endplate were greatly increased in the ASF model. The contact surface between the vertebrae and screw (CSVS) in the ASF model produced nearly 100% more stress than the BPSF model at all moments. In clinical practice, after a 12-month follow-up, 7 adverse events were observed, including 3 cases of left thigh pain/numbness, 3 cases of cage subsidence, and 1 case of screw loosening. CONCLUSIONS: OLIF surgery with ASF could not reduce the maximum stresses on the endplate and CSVS, which may be a potential risk factor for cage subsidence and screw loosening.


Assuntos
Parafusos Pediculares , Fusão Vertebral , Fenômenos Biomecânicos , Humanos , Vértebras Lombares/cirurgia , Região Lombossacral/cirurgia , Estudos Retrospectivos , Fusão Vertebral/métodos
8.
World Neurosurg ; 128: e315-e321, 2019 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-31028987

RESUMO

OBJECTIVE: To describe the operative methods and to investigate the efficacy of ventral neural decompression under microscopic vision with oblique lumbar interbody fusion (OLIF). METHODS: Twelve patients with extruded or sequestered disk were treated with ventral neural decompression under microscopic vision via the working corridor of routine OLIF. Their clinical data were gathered and analyzed retrospectively. The clinical efficacy was evaluated by the Oswestry Disability Index (ODI), visual analog scale (VAS), and relevant radiographic parameters. RESULTS: All operations went smoothly, with an average operative time of 151.7 ± 24.5 minutes and blood loss of 58.5 ± 21.3 mL. Well-decompressed canal observed in postoperative magnetic resonance imaging, significant improvements in VAS score for leg (P < 0.01) and ODI score (P < 0.01) confirmed satisfactory ventral neural decompression. Radiographic parameters including disk height (P < 0.01) and segmental disk angle improved significantly (P < 0.01). There was no significant difference between pre- and postoperative lumbar lordosis (P = 0.255). During the follow-up, end plate fracture was observed in 1 case. No major vessels, neural, or dural injury was observed. CONCLUSIONS: Microscopic ventral neural decompression with OLIF could achieve satisfactory clinical results with minimal complications in selected patients with extruded or sequestered disk.


Assuntos
Descompressão Cirúrgica/métodos , Discotomia/métodos , Deslocamento do Disco Intervertebral/cirurgia , Vértebras Lombares/cirurgia , Radiculopatia/cirurgia , Canal Medular/cirurgia , Fusão Vertebral/métodos , Feminino , Humanos , Deslocamento do Disco Intervertebral/complicações , Masculino , Microcirurgia , Pessoa de Meia-Idade , Radiculopatia/etiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA