Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Spectrochim Acta A Mol Biomol Spectrosc ; 313: 124108, 2024 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-38447442

RESUMO

This study aimed to perform a rapid in situ assessment of the quality of peach kernels using near infrared (NIR) spectroscopy, which included identifications of authenticity, species, and origins, and amygdalin quantitation. The in situ samples without any pretreatment were scanned by a portable MicroNIR spectrometer, while their powder samples were scanned by a benchtop Fourier transform NIR (FT-NIR) spectrometer. To improve the performance of the in situ determination model of the portable NIR spectrometer, the two spectrometers were first compared in identification and content models of peach kernels for both in situ and powder samples. Then, the in situ sample spectra were transferred by using the improved principal component analysis (IPCA) method to enhance the performance of the in situ model. After model transfer, the prediction performance of the in situ sample model was significantly improved, as shown by the correlation coefficient in the prediction set (Rp), root means square error of prediction (RMSEP), and residual prediction deviation (RPD) of the in situ model reached 0.9533, 0.0911, and 3.23, respectively, and correlation coefficient in the test set (Rt) and root means square error of test (RMSET) reached 0.9701 and 0.1619, respectively, suggesting that model transfer could be a viable solution to improve the model performance of portable spectrometers.


Assuntos
Prunus persica , Espectroscopia de Luz Próxima ao Infravermelho , Espectroscopia de Luz Próxima ao Infravermelho/métodos , Pós , Calibragem , Análise de Componente Principal , Análise dos Mínimos Quadrados
2.
Int J Anal Chem ; 2021: 2514762, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34630567

RESUMO

Separation power was limited when the conventional high-performance liquid chromatography (HPLC) fingerprinting method based on a single column was used to analyze very complex traditional Chinese medicine (TCM) preparations. In this research, a novel HPLC fingerprinting method based on column switching technology by using a single pump was established for evaluating the quality of Tianmeng oral liquid (TMOL). Twelve batches of TMOL samples were used for constructing HPLC fingerprints. Compared with the 16 common peaks in fingerprinting with a single column, 25 common peaks were achieved with two columns connected through a six-way valve. The similarity analysis combined with bootstrap method was applied to determine the similarity threshold, which was 0.992 to distinguish expired samples and unexpired samples. Principal component analysis (PCA) and hierarchical clustering analysis (HCA) were also applied to classify the TMOL samples, and results revealed that expired and unexpired samples are classified into two categories. The HPLC fingerprinting based on column switching technology with better separation power and higher peak capacity could characterize chemical composition information more comprehensively, providing an effective and alternative method to control and evaluate the quality of TMOL, which would offer a valuable reference for other TCM preparations.

3.
ASAIO J ; 62(4): 410-20, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-26955001

RESUMO

The aim of this work was to investigate the hemodynamic influence of the change of pump rate on the cardiovascular system with consideration of heart rate and the resonant characteristics of the arterial system when a reliable synchronous triggering source is unavailable. Hemodynamic waveforms are recorded at baseline conditions and with the pump rate of left ventricular assist device (LVAD) at 55, 60, 66, and 70 beats per minute for four test conditions in a mock circulatory system. The total input work (TIW) and energy equivalent pressure (EEP) are calculated as metrics for evaluating the hemodynamic performance within different test conditions. Experimental results show that TIW and EEP achieve their maximum values, where the pump rate is equal to the heart rate. In addition, it demonstrates that TIW and EEP are significantly affected by changing pump rate of LVAD, especially when the pump rate is closing to the natural frequency of the arterial system. When a reliable synchronous triggering source is not available for LVAD, it is suggested that selecting a pump rate equal to the resonant frequency of the arterial system could achieve better supporting effects.


Assuntos
Coração Auxiliar , Hemodinâmica/fisiologia , Artérias/fisiologia , Frequência Cardíaca/fisiologia , Humanos
4.
Zhongguo Yi Liao Qi Xie Za Zhi ; 39(1): 16-20, 2015 Jan.
Artigo em Chinês | MEDLINE | ID: mdl-26027287

RESUMO

This paper built the mathematical model of a centrifugal blood pump, which was designed by ourselves, combined it with that of the human cardiovascular system and simulated the coupling system using Matlab. Then we set up the experiment platform, linked the blood pump to mock human cardiovascular system in case of three-stage heart failure, and measured aortic pressure and flow under different speed. The comparison between experiment results and simulation results not only indicates the coupling model is correct and the blood pump works well, but also shows that with the increase of blood pump speed, the pulsation of aortic pressure and flow will be reduced, this situation will affect the structure and function of blood vessels.


Assuntos
Coração Auxiliar , Hemodinâmica , Modelos Teóricos , Sistema Cardiovascular , Humanos
5.
Sensors (Basel) ; 14(3): 4111-25, 2014 Feb 28.
Artigo em Inglês | MEDLINE | ID: mdl-24590353

RESUMO

Using the finite element method (FEM) and particle swarm optimization (PSO), a nonlinearity analysis based on parameter optimization is proposed to design an inductive angle sensor. Due to the structure complexity of the sensor, understanding the influences of structure parameters on the nonlinearity errors is a critical step in designing an effective sensor. Key parameters are selected for the design based on the parameters' effects on the nonlinearity errors. The finite element method and particle swarm optimization are combined for the sensor design to get the minimal nonlinearity error. In the simulation, the nonlinearity error of the optimized sensor is 0.053% in the angle range from -60° to 60°. A prototype sensor is manufactured and measured experimentally, and the experimental nonlinearity error is 0.081% in the angle range from -60° to 60°.

6.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 31(5): 1050-6, 2014 Oct.
Artigo em Chinês | MEDLINE | ID: mdl-25764720

RESUMO

The purpose of this paper is to report the research and design of control system of magnetic coupling centrifugal blood pump in our laboratory, and to briefly describe the structure of the magnetic coupling centrifugal blood pump and principles of the body circulation model. The performance of blood pump is not only related to materials and structure, but also depends on the control algorithm. We studied the algorithm about motor current double-loop control for brushless DC motor. In order to make the algorithm adjust parameter change in different situations, we used the self-tuning fuzzy PI control algorithm and gave the details about how to design fuzzy rules. We mainly used Matlab Simulink to simulate the motor control system to test the performance of algorithm, and briefly introduced how to implement these algorithms in hardware system. Finally, by building the platform and conducting experiments, we proved that self-tuning fuzzy PI control algorithm could greatly improve both dynamic and static performance of blood pump and make the motor speed and the blood pump flow stable and adjustable.


Assuntos
Circulação Assistida/instrumentação , Coração Auxiliar , Algoritmos , Lógica Fuzzy , Fenômenos Magnéticos , Magnetismo
7.
Sheng Wu Yi Xue Gong Cheng Xue Za Zhi ; 30(3): 617-22, 2013 Jun.
Artigo em Chinês | MEDLINE | ID: mdl-23865330

RESUMO

In order to achieve auxiliary timing of ventricular assisting device to automatically track the ECG signals, we designed a set of ECG acquisition circuit in our study for the first time. Then we carried out ECG acquisition, smoothing filter and QRS detection on the LabVIEW. With the QRS signal as a benchmark, the control system immediately triggered ventricular assisting device to trigger the heart to contract for ejection for about 300 ms, and then to assist to make it relax. The practical effects of the experiment proved that ECG acquisition circuit had the feature of strong anti-interference, and control system had no false QRS detection and no false triggering of assist device. This achieves the auxiliary timing which could automatically track the ECG signal.


Assuntos
Eletrocardiografia/instrumentação , Coração Auxiliar , Processamento de Sinais Assistido por Computador/instrumentação , Humanos
8.
Artif Organs ; 37(10): 875-83, 2013 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-23634991

RESUMO

Pulsatile left ventricular assist devices (LVADs) driven by electric motors have been widely accepted as a treatment of heart failure. Performance enhancement with computer assistance for this kind of LVAD has seldom been reported. In this article, a numerical method is proposed to assist the design of a cam-type pump. The method requires an integrated model of an LVAD system, consisting of a motor, a transmission mechanism, and a cardiovascular circulation. Performance indices, that is, outlet pressure, outlet flow, and pump efficiency, were used to select the best cam profile from six candidates. A prototype pump connected to a mock circulatory loop (MCL) was used to calibrate the friction coefficient of the cam groove and preliminarily evaluate modeling accuracy. In vitro experiments show that the mean outlet pressure and flow can be predicted with high accuracy by the model, and gross geometries of the measurements can also be reproduced. Simulation results demonstrate that as the total peripheral resistance (TPR) is fixed at 1.1 mm Hg.s/mL, the two-cycle 2/3-rise profile is the best. Compared with other profiles, the maximum increases of pressure and flow indices are 75 and 76%, respectively, and the maximum efficiency increase is over 51%. For different TPRs (0.5∼1.5 mm Hg.s/mL) and operation intervals (0.1∼0.4 s) in counterpulsation, the conclusion is also acceptable.


Assuntos
Desenho Assistido por Computador , Coração Auxiliar , Humanos , Modelos Cardiovasculares , Desenho de Prótese , Fluxo Pulsátil , Resistência Vascular
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA