Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 15(44): 18033-18043, 2023 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-37916424

RESUMO

Structural design and morphology engineering are considered significant strategies to boost the catalytic performance of electrocatalysts toward the oxygen evolution reaction. Inspired by the natural porosity and abundant functional groups, herein, hollow N-doped carbon nano-mushroom (NCNM) encapsulated hybrid sulfide particles rooted into a carbonized wood (CW) framework were prepared through simple impregnation followed by calcination. The as-prepared self-supporting electrodes present ultrahigh activity and robust stability. Among them, the NiFeS14@NCNM/CW catalyst yields incredible OER activity with an extraordinarily low overpotential of 147 and 250 mV to reach 10 and 50 mA cm-2, respectively, superior to most of the state-of-the-art wood-derived electrocatalysts. Additionally, a steady OER current density is maintained without obvious attenuation after continuous operation for 24 h. The superior electrocatalytic performance of NiFeS14@NCNM/CW is attributed to the synergistic effect of hybridization between Ni3S2 and Fe5Ni4S8, the coordination of one-dimensional (1D) NCNMs and hierarchical three-dimensional (3D) porous CW, modified electronic states by N and S doping, a large electrochemical surface area, and low activation energy. This research provides a novel approach to industrial-scale conversion of abundant biomass into efficient binder-free electrocatalysts for energy-related applications.

2.
Int J Biol Macromol ; 243: 124828, 2023 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-37217052

RESUMO

2D Ti3C2Tx MXene is an ideal material for fabricating supercapacitor electrodes due to its excellent physical-chemical properties. However, the inherent self-stacking, narrow interlayer spacing, and low general mechanical strength limit its application in flexible supercapacitors. Herein, facile structural engineering strategies by drying (vacuum drying, freeze drying, and spin drying) were proposed to fabricate 3D high-performance Ti3C2Tx/sulfated cellulose nanofibril (SCNF) self-supporting film supercapacitor electrodes. Compared with other composite films, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a looser interlayer structure with more space which was conducive to charge storage and ion transport in the electrolyte. Therefore, the freeze-dried Ti3C2Tx/SCNF composite film exhibited a higher specific capacitance (220 F/g) compared to the vacuum-dried Ti3C2Tx/SCNF composite film (191 F/g) and the spin-dried Ti3C2Tx/SCNF composite film (211 F/g). After 5000 cycles, the capacitance retention rate of the freeze-dried Ti3C2Tx/SCNF film electrode was close to 100 %, showing excellent cycle performance. Meanwhile, the tensile strength of freeze-dried Ti3C2Tx/SCNF composite film (13.7 MPa) was much greater than that of the pure film (7.4 MPa). This work demonstrated a facile strategy for control of Ti3C2Tx/SCNF composite film interlayer structure by drying for fabricating well-designed structured flexible and free-standing supercapacitor electrodes.


Assuntos
Sulfatos , Titânio , Celulose , Eletrodos
3.
Int J Mol Sci ; 23(13)2022 Jun 29.
Artigo em Inglês | MEDLINE | ID: mdl-35806259

RESUMO

Lignin nanoparticles, the innovative achievements in the development and utilization of lignin, combine the structural characteristics of nanomaterials and lignin molecules and have a wide range of applications. In this review, we summarize the methods for preparing lignin nanoparticles by solvent exchange method, mechanical method, biological enzymatic method, interface polymerization/crosslinking method, and spray freezing method, and emphatically introduce the application prospects of lignin nanoparticles in ultraviolet protection, antibacterial, nano-filler, drug delivery, and adsorption, aiming to provide a certain reference direction for additional high-value applications of lignin nanoparticles.


Assuntos
Nanopartículas , Nanoestruturas , Fenômenos Químicos , Lignina/química , Nanopartículas/química , Polimerização
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA