Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuron ; 111(21): 3450-3464.e5, 2023 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-37659407

RESUMO

The neurotransmitter γ-aminobutyric acid (GABA) drives critical inhibitory processes in and beyond the nervous system, partly via ionotropic type-A receptors (GABAARs). Pharmacological properties of ρ-type GABAARs are particularly distinctive, yet the structural basis for their specialization remains unclear. Here, we present cryo-EM structures of a lipid-embedded human ρ1 GABAAR, including a partial intracellular domain, under apo, inhibited, and desensitized conditions. An apparent resting state, determined first in the absence of modulators, was recapitulated with the specific inhibitor (1,2,5,6-tetrahydropyridin-4-yl)methylphosphinic acid and blocker picrotoxin and provided a rationale for bicuculline insensitivity. Comparative structures, mutant recordings, and molecular simulations with and without GABA further explained the sensitized but slower activation of ρ1 relative to canonical subtypes. Combining GABA with picrotoxin also captured an apparent uncoupled intermediate state. This work reveals structural mechanisms of gating and modulation with applications to ρ-specific pharmaceutical design and to our biophysical understanding of ligand-gated ion channels.


Assuntos
Receptores de GABA-A , Ácido gama-Aminobutírico , Humanos , Receptores de GABA-A/metabolismo , Picrotoxina/farmacologia , Ligantes , Ácido gama-Aminobutírico/metabolismo , Bicuculina/farmacologia , Sítios de Ligação
2.
Nat Commun ; 14(1): 5091, 2023 08 22.
Artigo em Inglês | MEDLINE | ID: mdl-37607940

RESUMO

γ-Aminobutyric acid type A (GABAA) receptors mediate fast inhibitory signaling in the brain and are targets of numerous drugs and endogenous neurosteroids. A subset of neurosteroids are GABAA receptor positive allosteric modulators; one of these, allopregnanolone, is the only drug approved specifically for treating postpartum depression. There is a consensus emerging from structural, physiological and photolabeling studies as to where positive modulators bind, but how they potentiate GABA activation remains unclear. Other neurosteroids are negative modulators of GABAA receptors, but their binding sites remain debated. Here we present structures of a synaptic GABAA receptor bound to allopregnanolone and two inhibitory sulfated neurosteroids. Allopregnanolone binds at the receptor-bilayer interface, in the consensus potentiator site. In contrast, inhibitory neurosteroids bind in the pore. MD simulations and electrophysiology support a mechanism by which allopregnanolone potentiates channel activity and suggest the dominant mechanism for sulfated neurosteroid inhibition is through pore block.


Assuntos
Neuroesteroides , Feminino , Humanos , Pregnanolona/farmacologia , Receptores de GABA-A , Sítios de Ligação , Sulfatos , Ácido gama-Aminobutírico
3.
Proc Natl Acad Sci U S A ; 119(43): e2208081119, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36251999

RESUMO

The α7 nicotinic acetylcholine receptor is a pentameric ligand-gated ion channel that modulates neuronal excitability, largely by allowing Ca2+ permeation. Agonist binding promotes transition from a resting state to an activated state, and then rapidly to a desensitized state. Recently, cryogenic electron microscopy (cryo-EM) structures of the human α7 receptor in nanodiscs were reported in multiple conformations. These were selectively stabilized by inhibitory, activating, or potentiating compounds. However, the functional annotation of these structures and their differential interactions with unresolved lipids and ligands remain incomplete. Here, we characterized their ion permeation, membrane interactions, and ligand binding using computational electrophysiology, free-energy calculations, and coarse-grained molecular dynamics. In contrast to nonconductive structures in apparent resting and desensitized states, the structure determined in the presence of the potentiator PNU-120596 was consistent with an activated state permeable to Ca2+. Transition to this state was associated with compression and rearrangement of the membrane, particularly in the vicinity of the peripheral MX helix. An intersubunit transmembrane site was implicated in selective binding of either PNU-120596 in the activated state or cholesterol in the desensitized state. This substantiates functional assignment of all three lipid-embedded α7-receptor structures with ion-permeation simulations. It also proposes testable models of their state-dependent interactions with lipophilic ligands, including a mechanism for allosteric modulation at the transmembrane subunit interface.


Assuntos
Canais Iônicos de Abertura Ativada por Ligante , Receptores Nicotínicos , Regulação Alostérica , Colesterol , Humanos , Isoxazóis , Canais Iônicos de Abertura Ativada por Ligante/metabolismo , Ligantes , Lipídeos , Compostos de Fenilureia , Receptores Nicotínicos/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo
4.
Biochim Biophys Acta Biomembr ; 1864(10): 183994, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-35724739

RESUMO

SARS-CoV-2 contains four structural proteins in its genome. These proteins aid in the assembly and budding of new virions at the ER-Golgi intermediate compartment (ERGIC). Current fundamental research efforts largely focus on one of these proteins - the spike (S) protein. Since successful antiviral therapies are likely to target multiple viral components, there is considerable interest in understanding the biophysical role of its other structural proteins, in particular structural membrane proteins. Here, we have focused our efforts on the characterization of the full-length envelope (E) protein from SARS-CoV-2, combining experimental and computational approaches. Recombinant expression of the full-length E protein from SARS-CoV-2 reveals that this membrane protein is capable of independent multimerization, possibly as a tetrameric or smaller species. Fluorescence microscopy shows that the protein localizes intracellularly, and coarse-grained MD simulations indicate it causes bending of the surrounding lipid bilayer, corroborating a potential role for the E protein in viral budding. Although we did not find robust electrophysiological evidence of ion-channel activity, cells transfected with the E protein exhibited reduced intracellular Ca2+, which may further promote viral replication. However, our atomistic MD simulations revealed that previous NMR structures are relatively unstable, and result in models incapable of ion conduction. Our study highlights the importance of using high-resolution structural data obtained from a full-length protein to gain detailed molecular insights, and eventually permitting virtual drug screening.


Assuntos
COVID-19 , SARS-CoV-2 , Cálcio , Humanos , Proteínas do Envelope Viral/química , Montagem de Vírus
5.
Life Sci Alliance ; 4(8)2021 08.
Artigo em Inglês | MEDLINE | ID: mdl-34210687

RESUMO

Ligand-gated ion channels are critical mediators of electrochemical signal transduction across evolution. Biophysical and pharmacological characterization of these receptor proteins relies on high-quality structures in multiple, subtly distinct functional states. However, structural data in this family remain limited, particularly for resting and intermediate states on the activation pathway. Here, we report cryo-electron microscopy (cryo-EM) structures of the proton-activated Gloeobacter violaceus ligand-gated ion channel (GLIC) under three pH conditions. Decreased pH was associated with improved resolution and side chain rearrangements at the subunit/domain interface, particularly involving functionally important residues in the ß1-ß2 and M2-M3 loops. Molecular dynamics simulations substantiated flexibility in the closed-channel extracellular domains relative to the transmembrane ones and supported electrostatic remodeling around E35 and E243 in proton-induced gating. Exploration of secondary cryo-EM classes further indicated a low-pH population with an expanded pore. These results allow us to define distinct protonation and activation steps in pH-stimulated conformational cycling in GLIC, including interfacial rearrangements largely conserved in the pentameric channel family.


Assuntos
Cianobactérias/metabolismo , Canais Iônicos de Abertura Ativada por Ligante/química , Proteínas de Bactérias/química , Microscopia Crioeletrônica , Cianobactérias/química , Concentração de Íons de Hidrogênio , Modelos Moleculares , Simulação de Dinâmica Molecular , Conformação Proteica , Domínios Proteicos
6.
Nature ; 585(7824): 303-308, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32879488

RESUMO

Most general anaesthetics and classical benzodiazepine drugs act through positive modulation of γ-aminobutyric acid type A (GABAA) receptors to dampen neuronal activity in the brain1-5. However, direct structural information on the mechanisms of general anaesthetics at their physiological receptor sites is lacking. Here we present cryo-electron microscopy structures of GABAA receptors bound to intravenous anaesthetics, benzodiazepines and inhibitory modulators. These structures were solved in a lipidic environment and are complemented by electrophysiology and molecular dynamics simulations. Structures of GABAA receptors in complex with the anaesthetics phenobarbital, etomidate and propofol reveal both distinct and common transmembrane binding sites, which are shared in part by the benzodiazepine drug diazepam. Structures in which GABAA receptors are bound by benzodiazepine-site ligands identify an additional membrane binding site for diazepam and suggest an allosteric mechanism for anaesthetic reversal by flumazenil. This study provides a foundation for understanding how pharmacologically diverse and clinically essential drugs act through overlapping and distinct mechanisms to potentiate inhibitory signalling in the brain.


Assuntos
Anestésicos Gerais/química , Anestésicos Gerais/farmacologia , Barbitúricos/química , Barbitúricos/farmacologia , Benzodiazepinas/química , Benzodiazepinas/farmacologia , Microscopia Crioeletrônica , Receptores de GABA-A/química , Regulação Alostérica/efeitos dos fármacos , Anestésicos Gerais/metabolismo , Barbitúricos/metabolismo , Benzodiazepinas/metabolismo , Bicuculina/química , Bicuculina/metabolismo , Bicuculina/farmacologia , Sítios de Ligação , Ligação Competitiva/efeitos dos fármacos , Diazepam/química , Diazepam/metabolismo , Diazepam/farmacologia , Eletrofisiologia , Etomidato/química , Etomidato/metabolismo , Etomidato/farmacologia , Flumazenil/farmacologia , Antagonistas de Receptores de GABA-A/química , Antagonistas de Receptores de GABA-A/metabolismo , Antagonistas de Receptores de GABA-A/farmacologia , Humanos , Ligantes , Modelos Moleculares , Conformação Molecular , Simulação de Dinâmica Molecular , Fenobarbital/química , Fenobarbital/metabolismo , Fenobarbital/farmacologia , Picrotoxina/química , Picrotoxina/metabolismo , Picrotoxina/farmacologia , Propofol/química , Propofol/metabolismo , Propofol/farmacologia , Receptores de GABA-A/metabolismo , Receptores de GABA-A/ultraestrutura , Ácido gama-Aminobutírico/química , Ácido gama-Aminobutírico/metabolismo , Ácido gama-Aminobutírico/farmacologia
7.
Neuron ; 104(3): 501-511.e6, 2019 11 06.
Artigo em Inglês | MEDLINE | ID: mdl-31488329

RESUMO

Nicotinic acetylcholine receptors are pentameric ion channels that mediate fast chemical neurotransmission. The α3ß4 nicotinic receptor subtype forms the principal relay between the central and peripheral nervous systems in the autonomic ganglia. This receptor is also expressed focally in brain areas that affect reward circuits and addiction. Here, we present structures of the α3ß4 nicotinic receptor in lipidic and detergent environments, using functional reconstitution to define lipids appropriate for structural analysis. The structures of the receptor in complex with nicotine, as well as the α3ß4-selective ligand AT-1001, complemented by molecular dynamics, suggest principles of agonist selectivity. The structures further reveal much of the architecture of the intracellular domain, where mutagenesis experiments and simulations define residues governing ion conductance.


Assuntos
Nicotina/metabolismo , Agonistas Nicotínicos/metabolismo , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/ultraestrutura , Sódio/metabolismo , Microscopia Crioeletrônica , Gânglios Autônomos , Células HEK293 , Humanos , Simulação de Dinâmica Molecular , Oligopeptídeos/metabolismo , Técnicas de Patch-Clamp , Estrutura Terciária de Proteína
9.
J Am Chem Soc ; 137(3): 1341-7, 2015 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-25545361

RESUMO

Diverse and controllable pathways induced by palladium-catalyzed intramolecular Heck reaction of N-vinylacetamides for the synthesis of nitrogen-containing products in reasonable to high yields via tuning the phosphine ligands and bases are reported. Domino reactions including unique ß-N-Pd elimination, 1,4-Pd migration, or direct acyl C-H bond functionalization were found to be involved forming different products, respectively. Given the ability of using the same starting material to generate diverse products via completely different chemoselective processes, these current methodologies offer straightforward access to valuable nitrogen-containing products under mild reaction conditions as well as inspire the discovery of novel reactions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA