Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Neuroscience ; 555: 205-212, 2024 Jul 23.
Artigo em Inglês | MEDLINE | ID: mdl-39053670

RESUMO

The perirhinal cortex (PRC) and parahippocampal cortex (PHC) are core regions along the visual dual-stream. The specific functional roles of the PRC and PHC and their interactions with the downstream hippocampus cortex (HPC) are crucial for understanding visual memory. Our research used human intracranial EEGs to study the neural mechanism of the PRC, PHC, and HPC in visual object encoding. Single-regional function analyses found evidence that the PRC, PHC, and HPC are activated ∼100 ms within the broad-gamma band and that the PRC was more strongly activated than either the PHC or the HPC after an object stimulus. Inter-regional analyses showed strong bidirectional interactions of the PRC with both the PHC and HPC in the low-frequency band, whereas the interactions between the PHC and HPC were not significant. These findings demonstrated the core role of the PRC in encoding visual object information and supported the hypothesis of PRC-HPC-ventral object pathway. The recruitment of the PHC and its interaction with the PRC in visual object encoding also provide new insights beyond the traditional dorsal-stream hypothesis.

2.
Biomed Opt Express ; 15(6): 3541-3554, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38867784

RESUMO

The hippocampus is a critical brain region. Transcriptome data provides valuable insights into the structure and function of the hippocampus at the gene level. However, transcriptome data is often incomplete. To address this issue, we use the convolutional neural network model to repair the missing voxels in the hippocampus region, based on Allen institute coronal slices in situ hybridization (ISH) dataset. Moreover, we analyze the gene expression correlation between coronal and sagittal dataset in the hippocampus region. The results demonstrated that the trend of gene expression correlation between the coronal and sagittal datasets remained consistent following the repair of missing data in the coronal ISH dataset. In the last, we use repaired ISH dataset to identify novel genes specific to hippocampal subregions. Our findings demonstrate the accuracy and effectiveness of using deep learning method to repair ISH missing data. After being repaired, ISH has the potential to improve our comprehension of the hippocampus's structure and function.

3.
Nat Commun ; 15(1): 2884, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38570488

RESUMO

Increasing evidence has revealed the large-scale nonstationary synchronizations as traveling waves in spontaneous neural activity. However, the interplay of various cell types in fine-tuning these spatiotemporal patters remains unclear. Here, we performed comprehensive exploration of spatiotemporal synchronizing structures across different cell types, states (awake, anesthesia, motion) and developmental axis in male mice. We found traveling waves in glutamatergic neurons exhibited greater variety than those in GABAergic neurons. Moreover, the synchronizing structures of GABAergic neurons converged toward those of glutamatergic neurons during development, but the evolution of waves exhibited varying timelines for different sub-type interneurons. Functional connectivity arises from both standing and traveling waves, and negative connections can be elucidated by the spatial propagation of waves. In addition, some traveling waves were correlated with the spatial distribution of gene expression. Our findings offer further insights into the neural underpinnings of traveling waves, functional connectivity, and resting-state networks, with cell-type specificity and developmental perspectives.


Assuntos
Neurônios GABAérgicos , Masculino , Camundongos , Animais
4.
Sensors (Basel) ; 24(1)2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38203011

RESUMO

Macular pathologies can cause significant vision loss. Optical coherence tomography (OCT) images of the retina can assist ophthalmologists in diagnosing macular diseases. Traditional deep learning networks for retinal disease classification cannot extract discriminative features under strong noise conditions in OCT images. To address this issue, we propose a multi-scale-denoising residual convolutional network (MS-DRCN) for classifying retinal diseases. Specifically, the MS-DRCN includes a soft-denoising block (SDB), a multi-scale context block (MCB), and a feature fusion block (FFB). The SDB can determine the threshold for soft thresholding automatically, which removes speckle noise features efficiently. The MCB is designed to capture multi-scale context information and strengthen extracted features. The FFB is dedicated to integrating high-resolution and low-resolution features to precisely identify variable lesion areas. Our approach achieved classification accuracies of 96.4% and 96.5% on the OCT2017 and OCT-C4 public datasets, respectively, outperforming other classification methods. To evaluate the robustness of our method, we introduced Gaussian noise and speckle noise with varying PSNRs into the test set of the OCT2017 dataset. The results of our anti-noise experiments demonstrate that our approach exhibits superior robustness compared with other methods, yielding accuracy improvements ranging from 0.6% to 2.9% when compared with ResNet under various PSNR noise conditions.


Assuntos
Doenças Retinianas , Tomografia de Coerência Óptica , Humanos , Retina/diagnóstico por imagem , Doenças Retinianas/diagnóstico por imagem , Distribuição Normal
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA