Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nanoscale ; 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38984462

RESUMO

It is widely accepted that the interaction of swift heavy ions with many complex oxides is predominantly governed by the electronic energy loss that gives rise to nanoscale amorphous ion tracks along the penetration direction. The question of how electronic excitation and electron-phonon coupling affect the atomic system through defect production, recrystallization, and strain effects has not yet been fully clarified. To advance the knowledge of the atomic structure of ion tracks, we irradiated single crystalline SrTiO3 with 629 MeV Xe ions and performed comprehensive electron microscopy investigations complemented by molecular dynamics simulations. This study shows discontinuous ion-track formation along the ion penetration path, comprising an amorphous core and a surrounding few monolayer thick shell of strained/defective crystalline SrTiO3. Using machine-learning-aided analysis of atomic-scale images, we demonstrate the presence of 4-8% strain in the disordered region interfacing with the amorphous core in the initially formed ion tracks. Under constant exposure of the electron beam during imaging, the amorphous part of the ion tracks readily recrystallizes radially inwards from the crystalline-amorphous interface under the constant electron-beam irradiation during the imaging. Cation strain in the amorphous region is observed to be significantly recovered, while the oxygen sublattice remains strained even under the electron irradiation due to the present oxygen vacancies. The molecular dynamics simulations support this observation and suggest that local transient heating and annealing facilitate recrystallization process of the amorphous phase and drive Sr and Ti sublattices to rearrange. In contrast, the annealing of O atoms is difficult, thus leaving a remnant of oxygen vacancies and strain even after recrystallization. This work provides insights for creating and transforming novel interfaces and nanostructures for future functional applications.

2.
Chem Commun (Camb) ; 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38922599

RESUMO

We investigate the properties of ultrathin 3,4,9,10-perylenetetracarboxylic diimide (PTCDI) films using a combination of tip-enhanced photoluminescence and unsupervised machine learning. We expose nanoscale spectral heterogeneities that can be understood on the basis of the interplay between vibronic effects, intermolecular excitons, and intramolecular excitons in PTDCI films.

3.
Nat Commun ; 14(1): 7196, 2023 Nov 08.
Artigo em Inglês | MEDLINE | ID: mdl-37938577

RESUMO

Unraveling local dynamic charge processes is vital for progress in diverse fields, from microelectronics to energy storage. This relies on the ability to map charge carrier motion across multiple length- and timescales and understanding how these processes interact with the inherent material heterogeneities. Towards addressing this challenge, we introduce high-speed sparse scanning Kelvin probe force microscopy, which combines sparse scanning and image reconstruction. This approach is shown to enable sub-second imaging (>3 frames per second) of nanoscale charge dynamics, representing several orders of magnitude improvement over traditional Kelvin probe force microscopy imaging rates. Bridging this improved spatiotemporal resolution with macroscale device measurements, we successfully visualize electrochemically mediated diffusion of mobile surface ions on a LaAlO3/SrTiO3 planar device. Such processes are known to impact band-alignment and charge-transfer dynamics at these heterointerfaces. Furthermore, we monitor the diffusion of oxygen vacancies at the single grain level in polycrystalline TiO2. Through temperature-dependent measurements, we identify a charge diffusion activation energy of 0.18 eV, in good agreement with previously reported values and confirmed by DFT calculations. Together, these findings highlight the effectiveness and versatility of our method in understanding ionic charge carrier motion in microelectronics or nanoscale material systems.

4.
Patterns (N Y) ; 4(11): 100858, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-38035198

RESUMO

The broad adoption of machine learning (ML)-based autonomous experiments (AEs) in material characterization and synthesis requires strategies development for understanding and intervention in the experimental workflow. Here, we introduce and realize a post-experimental analysis strategy for deep kernel learning-based autonomous scanning probe microscopy. This approach yields real-time and post-experimental indicators for the progression of an active learning process interacting with an experimental system. We further illustrate how this approach can be applied to human-in-the-loop AEs, where human operators make high-level decisions at high latencies setting the policies for AEs, and the ML algorithm performs low-level, fast decisions. The proposed approach is universal and can be extended to other techniques and applications such as combinatorial library analysis.

6.
Microsc Microanal ; 29(Supplement_1): 1929, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37612991
10.
Microsc Microanal ; 29(Supplement_1): 719, 2023 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-37613366
14.
ACS Nano ; 17(10): 9647-9657, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37155579

RESUMO

Underlying the rapidly increasing photovoltaic efficiency and stability of metal halide perovskites (MHPs) is the advancement in the understanding of the microstructure of polycrystalline MHP thin film. Over the past decade, intense efforts have been aimed at understanding the effect of microstructures on MHP properties, including chemical heterogeneity, strain disorder, phase impurity, etc. It has been found that grain and grain boundary (GB) are tightly related to lots of microscale and nanoscale behavior in MHP thin films. Atomic force microscopy (AFM) is widely used to observe grain and boundary structures in topography and subsequently to study the correlative surface potential and conductivity of these structures. For now, most AFM measurements have been performed in imaging mode to study the static behavior; in contrast, AFM spectroscopy mode allows us to investigate the dynamic behavior of materials, e.g., conductivity under sweeping voltage. However, a major limitation of AFM spectroscopy measurements is that they require manual operation by human operators, and as such only limited data can be obtained, hindering systematic investigations of these microstructures. In this work, we designed a workflow combining the conductive AFM measurement with a machine learning (ML) algorithm to systematically investigate grain boundaries in MHPs. The trained ML model can extract GBs locations from the topography image, and the workflow drives the AFM probe to each GB location to perform a current-voltage (IV) curve automatically. Then, we are able to have IV curves at all GB locations, allowing us to systematically understand the property of GBs. Using this method, we discovered that the GB junction points are less conductive, potentially more photoactive, and can play critical roles in MHP stability, while most previous works only focused on the difference between GB and grains.

15.
ArXiv ; 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36945686

RESUMO

Through digital imaging, microscopy has evolved from primarily being a means for visual observation of life at the micro- and nano-scale, to a quantitative tool with ever-increasing resolution and throughput. Artificial intelligence, deep neural networks, and machine learning are all niche terms describing computational methods that have gained a pivotal role in microscopy-based research over the past decade. This Roadmap is written collectively by prominent researchers and encompasses selected aspects of how machine learning is applied to microscopy image data, with the aim of gaining scientific knowledge by improved image quality, automated detection, segmentation, classification and tracking of objects, and efficient merging of information from multiple imaging modalities. We aim to give the reader an overview of the key developments and an understanding of possibilities and limitations of machine learning for microscopy. It will be of interest to a wide cross-disciplinary audience in the physical sciences and life sciences.

16.
Small ; 19(25): e2205893, 2023 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-36942857

RESUMO

The application of machine learning is demonstrated for rapid and accurate extraction of plasmonic particles cluster geometries from hyperspectral image data via a dual variational autoencoder (dual-VAE). In this approach, the information is shared between the latent spaces of two VAEs acting on the particle shape data and spectral data, respectively, but enforcing a common encoding on the shape-spectra pairs. It is shown that this approach can establish the relationship between the geometric characteristics of nanoparticles and their far-field photonic responses, demonstrating that hyperspectral darkfield microscopy can be used to accurately predict the geometry (number of particles, arrangement) of a multiparticle assemblies below the diffraction limit in an automated fashion with high fidelity (for monomers (0.96), dimers (0.86), and trimers (0.58). This approach of building structure-property relationships via shared encoding is universal and should have applications to a broader range of materials science and physics problems in imaging of both molecular and nanomaterial systems.

17.
J Phys Chem Lett ; 14(13): 3352-3359, 2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-36994975

RESUMO

Electronic transport and hysteresis in metal halide perovskites (MHPs) are key to the applications in photovoltaics, light emitting devices, and light and chemical sensors. These phenomena are strongly affected by the materials microstructure including grain boundaries, ferroic domain walls, and secondary phase inclusions. Here, we demonstrate an active machine learning framework for "driving" an automated scanning probe microscope (SPM) to discover the microstructures responsible for specific aspects of transport behavior in MHPs. In our setup, the microscope can discover the microstructural elements that maximize the onset of conduction, hysteresis, or any other characteristic that can be derived from a set of current-voltage spectra. This approach opens new opportunities for exploring the origins of materials functionality in complex materials by SPM and can be integrated with other characterization techniques either before (prior knowledge) or after (identification of locations of interest for detail studies) functional probing.

18.
Patterns (N Y) ; 4(3): 100704, 2023 Mar 10.
Artigo em Inglês | MEDLINE | ID: mdl-36960442

RESUMO

Using hypothesis-learning-driven automated scanning probe microscopy (SPM), we explore the bias-induced transformations that underpin the functionality of broad classes of devices and materials from batteries and memristors to ferroelectrics and antiferroelectrics. Optimization and design of these materials require probing the mechanisms of these transformations on the nanometer scale as a function of a broad range of control parameters, leading to experimentally intractable scenarios. Meanwhile, often these behaviors are understood within potentially competing theoretical hypotheses. Here, we develop a hypothesis list covering possible limiting scenarios for domain growth in ferroelectric materials, including thermodynamic, domain-wall pinning, and screening limited. The hypothesis-driven SPM autonomously identifies the mechanisms of bias-induced domain switching, and the results indicate that domain growth is ruled by kinetic control. We note that the hypothesis learning can be broadly used in other automated experiment settings.

19.
Adv Sci (Weinh) ; 9(36): e2203422, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-36344455

RESUMO

Physics-driven discovery in an autonomous experiment has emerged as a dream application of machine learning in physical sciences. Here, this work develops and experimentally implements a deep kernel learning (DKL) workflow combining the correlative prediction of the target functional response and its uncertainty from the structure, and physics-based selection of acquisition function, which autonomously guides the navigation of the image space. Compared to classical Bayesian optimization (BO) methods, this approach allows to capture the complex spatial features present in the images of realistic materials, and dynamically learn structure-property relationships. In combination with the flexible scalarizer function that allows to ascribe the degree of physical interest to predicted spectra, this enables physical discovery in automated experiment. Here, this approach is illustrated for nanoplasmonic studies of nanoparticles and experimentally implemented in a truly autonomous fashion for bulk- and edge plasmon discovery in MnPS3 , a lesser-known beam-sensitive layered 2D material. This approach is universal, can be directly used as-is with any specimen, and is expected to be applicable to any probe-based microscopic techniques including other STEM modalities, scanning probe microscopies, chemical, and optical imaging.


Assuntos
Nanopartículas , Microscopia Eletrônica de Transmissão e Varredura/métodos , Teorema de Bayes , Aprendizado de Máquina , Física
20.
Small ; 18(48): e2204130, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36253123

RESUMO

An automated experiment in multimodal imaging to probe structural, chemical, and functional behaviors in complex materials and elucidate the dominant physical mechanisms that control device function is developed and implemented. Here, the emergence of non-linear electromechanical responses in piezoresponse force microscopy (PFM) is explored. Non-linear responses in PFM can originate from multiple mechanisms, including intrinsic material responses often controlled by domain structure, surface topography that affects the mechanical phenomena at the tip-surface junction, and the presence of surface contaminants. Using an automated experiment to probe the origins of non-linear behavior in ferroelectric lead titanate (PTO) and ferroelectric Al0.93 B0.07 N films, it is found that PTO shows asymmetric nonlinear behavior across a/c domain walls and a broadened high nonlinear response region around c/c domain walls. In contrast, for Al0.93 B0.07 N, well-poled regions show high linear piezoelectric responses, when paired with low non-linear responses regions that are multidomain show low linear responses and high nonlinear responses. It is shown that formulating dissimilar exploration strategies in deep kernel learning as alternative hypotheses allows for establishing the preponderant physical mechanisms behind the non-linear behaviors, suggesting that automated experiments can potentially discern between competing physical mechanisms. This technique can also be extended to electron, probe, and chemical imaging.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA