Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 17 de 17
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
ACS Appl Mater Interfaces ; 16(5): 5881-5895, 2024 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-38277499

RESUMO

This study presents a novel approach to developing high-performance lithium-ion battery electrodes by loading titania-carbon hybrid spherogels with sulfur. The resulting hybrid materials combine high charge storage capacity, electrical conductivity, and core-shell morphology, enabling the development of next-generation battery electrodes. We obtained homogeneous carbon spheres caging crystalline titania particles and sulfur using a template-assisted sol-gel route and carefully treated the titania-loaded carbon spherogels with hydrogen sulfide. The carbon shells maintain their microporous hollow sphere morphology, allowing for efficient sulfur deposition while protecting the titania crystals. By adjusting the sulfur impregnation of the carbon sphere and varying the titania loading, we achieved excellent lithium storage properties by successfully cycling encapsulated sulfur in the sphere while benefiting from the lithiation of titania particles. Without adding a conductive component, the optimized material provided after 150 cycles at a specific current of 250 mA g-1 a specific capacity of 825 mAh g-1 with a Coulombic efficiency of 98%.

2.
ACS Appl Nano Mater ; 6(21): 19887-19895, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37969782

RESUMO

Under ambient conditions and in aqueous environments, transformations of nanoparticle-based ferroelectric components can raise important stability issues that are relevant for applications as multilayer capacitors, flexible piezoelectrics, or biomedical devices. We show that X-ray amorphous BaTiO3 nanoparticles that were grown by flame spray pyrolysis and which can be incorporated into electrospun polymer fibers undergo incongruent Ba2+ dissolution in the presence of water. At pH > 5 and in contact with air, corresponding Ba solutes spontaneously convert into crystalline BaCO3 needles to produce characteristic nano- and microstructures. We compared the reactivity of amorphous BaTiO3 nanoparticle powders with those of nanocrystals after annealing-induced crystallization. The stability of aqueous nanoparticle-polymer formulations, which are typically part of nanoparticle encapsulation in polymers and electrospinning, was included in this analysis. Nanoparticle size, crystallinity, surface area, the presence of carbonaceous surface contaminants, and the effect of surface passivation with polymers are addressed to underline the critical role of condensed water during the synthesis, storage, and processing of BaTiO3 nanoparticle-based composites.

3.
Chemphyschem ; 24(21): e202300250, 2023 Nov 02.
Artigo em Inglês | MEDLINE | ID: mdl-37534548

RESUMO

Compositionally and structurally complex semiconductor oxide nanostructures gain importance in many energy-related applications. Simple and robust synthesis routes ideally complying with the principles of modern green chemistry are therefore urgently needed. Here we report on the one-step, room-temperature synthesis of a crystalline-amorphous biphasic ternary metal oxide at the ZnO surface using aqueous precursor solutions. More specifically, conformal and porous ZnMnO3 shells are photodeposited from KMnO4 solution onto immobilized ZnO nanowires acting not only as the substrate but also as the Zn precursor. This water-based, low temperature process yields ZnMnO3 /ZnO composite electrodes featuring in 1 M Na2 SO4 aqueous solution capacitance values of 80-160 F g-1 (as referred to the total mass of the porous film i. e. the electroactive ZnMnO3 phase and the ZnO nanowire array). Our results highlight the suitability of photodeposition as a simple and green route towards complex functional materials.

4.
J Am Ceram Soc ; 106(2): 897-912, 2023 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-37063706

RESUMO

Ion exsolution can be instrumental to engineer intergranular regions inside ceramic microstructures. BaO admixtures that were trapped inside nanometer-sized MgO grains during gas phase synthesis undergo annealing-induced exsolution to generate photoluminescent surface and interface structures. During their segregation from the bulk into the grain interfaces, the BaO admixtures impact grain coarsening and powder densification, effects that were compared for the first time using an integrated characterization approach. For the characterization of the different stages the materials adopt between powder synthesis and compact annealing, spectroscopy measurements (UV-Vis diffuse reflectance, cathodo- and photoluminescence [PL]) were complemented by an in-depth structure characterization (density measurements, X-ray diffraction [XRD], and electron microscopy). Depending on the Ba2+ concentration, isolated impurity ions either become part of low-coordinated surface structures of the MgO grains where they give rise to a characteristic bright PL emission profile around λ = 500 nm, or they aggregate to form nanocrystalline BaO segregates at the inner pore surfaces to produce an emission feature centered at λ = 460 nm. Both types of PL emission sites exhibit O2 gas adsorption-dependent PL emission properties that are reversible with respect to its pressure. The here-reported distribution of BaO segregates between the intergranular region and the free pore surfaces inside the MgO-based compacts underlines that solid-based exsolution strategies are well suited to stabilize nanometer-sized segregates of metal oxides that otherwise would coalesce and grow in size beyond the nanoscale.

5.
Inorg Chem ; 62(17): 6649-6660, 2023 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-37079557

RESUMO

Exploring photocatalysts for solar water splitting is a relevant step toward sustainable hydrogen production. Sillén-Aurivillius-type compounds have proven to be a promising material class for photocatalytic and photoelectrochemical water splitting with the advantage of visible light activity coupled to enhanced stability because of their unique electronic structure. Especially, double- and multilayered Sillén-Aurivillius compounds [An-1BnO3n+1][Bi2O2]2Xm, with A and B being cations and X a halogen anion, offer a great variety in material composition and properties. Yet, research in this field is limited to only a few compounds, all of them containing mainly Ta5+ or Nb5+ as cations. This work takes advantage of the outstanding properties of Ti4+ demonstrated in the context of photocatalytic water splitting. A fully titanium-based oxychloride, La2.1Bi2.9Ti2O11Cl, with a double-layered Sillén-Aurivillius intergrowth structure is fabricated via a facile one-step solid-state synthesis. A detailed crystal structure analysis is performed via powder X-ray diffraction and correlated to density functional theory calculations, providing a detailed understanding of the site occupancies in the unit cell. The chemical composition and the morphology are studied using scanning and transmission electron microscopy together with energy-dispersive X-ray analysis. The capability of the compound to absorb visible light is demonstrated by UV-vis spectroscopy and analyzed by electronic structure calculations. The activity toward the hydrogen and the oxygen evolution reaction is evaluated by measuring anodic and cathodic photocurrent densities, oxygen evolution rates, and incident-current-to-photon efficiencies. Thanks to the incorporation of Ti4+, this Sillén-Aurivillius-type compound enables best-in-class photoelectrochemical water splitting performance at the oxygen evolution side under visible light irradiation. Thus, this work highlights the potential of Ti-containing Sillén-Aurivillius-type compounds as stable photocatalysts for visible light-driven solar water splitting.

6.
Chemphyschem ; 24(1): e202200586, 2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36070988

RESUMO

Mixed transition metal oxides have emerged as promising electrode materials for electrochemical energy storage and conversion. To optimize the functional electrode properties, synthesis approaches allowing for a systematic tailoring of the materials' composition, crystal structure and morphology are urgently needed. Here we report on the room-temperature electrodeposition of a ternary oxide based on earth-abundant metals, specifically, the defective cubic spinel ZnMnO3 . In this unprecedented approach, ZnO surfaces act as (i) electron source for the interfacial reduction of MnO4 - in aqueous solution, (ii) as substrate for epitaxial growth of the deposit and (iii) as Zn precursor for the formation of ZnMnO3 . Epitaxial growth of ZnMnO3 on the lateral facets of ZnO nanowires assures effective electronic communication between the electroactive material and the conducting scaffold and gives rise to a pronounced 2-dimensional morphology of the electrodeposit forming - after partial delamination from the substrate - twisted nanosheets. The synthesis strategy shows promise for the direct growth of different mixed transition metal oxides as electroactive phase onto conductive substrates and thus for the fabrication of binder-free nanocomposite electrodes.

7.
Cryst Growth Des ; 21(8): 4674-4682, 2021 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-34381312

RESUMO

Developing simple, inexpensive, and environmentally benign approaches to integrate morphologically well-defined nanoscale building blocks into larger high surface area materials is a key challenge in materials design and processing. In this work, we investigate the fundamental surface phenomena between MgO and water (both adsorption and desorption) with particles prepared via a vapor-phase process (MgO nanocubes) and a modified aerogel process (MgO(111) nanosheets). Through these studies, we unravel a strategy to assemble individual MgO nanoparticles into extended faceted single-crystalline MgO nanosheets and nanorods with well-defined exposed surfaces and edges. This reorganization can be triggered by the presence of H2O vapor or bulk liquid water. Water adsorption and the progressive conversion of vapor-phase grown oxide particles into hydroxides give rise to either one-dimensional or two-dimensional (1D or 2D) structures of high dispersion and surface area. The resulting Mg(OH)2 lamella with a predominant (001) surface termination are well-suited precursor structures for their topotactic conversion into laterally extended and uniform MgO(111) grain surface configurations. To understand the potential of polar (111) surfaces for faceting and surface reconstruction effects associated with water desorption, we investigated the stability of MgO(111) nanosheets during vacuum annealing and electron beam exposure. The significant surface reconstruction of the MgO(111) surfaces observed shows that adsorbate-free (111)-terminated surfaces of unsupported MgO nanostructures reconstruct rather than remain as charged planes of either three-fold coordinated O2- ion or Mg2+ ions. Thus, here we demonstrate the role water can play in surface formation and reconstruction by bridging wet chemical and surface science inspired approaches.

8.
Aquat Toxicol ; 237: 105869, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34082272

RESUMO

Silver nanoparticles (Ag NPs) are widely used in consumer products especially because of their antimicrobial properties. However, this wide usage of Ag NPs is accompanied by their release into the environment where they will be rapidly transformed to other silver species - especially silver sulfide (Ag2S). In the present study, we synthesized Ag NPs and sulfidized them to obtain a core-shell system Ag@Ag2S NPs. Both types of particles form stable dispersions with hydrodynamic diameters of less than 100 nm when diluted in water, but tend to form micrometer-sized agglomerates in biological exposure media. Application of Ag and Ag@Ag2S NPs to rainbow trout intestinal cells (RTgutGC) resulted in a concentration-dependent cytotoxicity for both types of particles, as assessed by a three-endpoint assay for metabolic activity, membrane integrity and lysosomal integrity. The Ag NPs were shown to be slightly more toxic than the Ag@Ag2S NPs. Adding Ag or Ag@Ag2S NPs to RTgutGC cells, grown on a permeable membrane to mimic the intestinal barrier, revealed considerable accumulation of silver for both types of particles. Indeed, the cells significantly attenuated the NP translocation, allowing only a fraction of the metal to translocate across the intestinal epithelium. These findings support the notion that the intestine constitutes an important sink for Ag NPs and that, despite the reduced cytotoxicity of a sulfidized NP form, the particles can enter fish where they may constitute a long-term source for silver ion release and cytotoxicity.


Assuntos
Nanopartículas Metálicas , Oncorhynchus mykiss , Poluentes Químicos da Água , Animais , Intestinos , Nanopartículas Metálicas/toxicidade , Prata/análise , Prata/toxicidade , Compostos de Prata , Poluentes Químicos da Água/toxicidade
9.
ACS Appl Mater Interfaces ; 13(21): 25493-25502, 2021 Jun 02.
Artigo em Inglês | MEDLINE | ID: mdl-34009927

RESUMO

Nanostructured segregates of alkaline earth oxides exhibit bright photoluminescence emission and great potential as components of earth-abundant inorganic phosphors. We evaluated segregation engineering of Ca2+- and Ba2+-admixtures in sintered MgO nanocube-derived compacts. Compaction and sintering transform the nanoparticle agglomerates into ceramics with residual porosities of Φ = 24-28%. Size mismatch drives admixture segregation into the intergranular region, where they form thin metal oxide films and inclusions decorating grain boundaries and pores. An important trend in the median grain size evolution of the sintered bodies with dCa(10 at. %) = 90 nm < dBa(1 at. %) = 160 nm < dMgO = 250 nm ∼ dCa(1 at. %) = 280 nm < dBa(10 at. %) = 870 nm is rationalized by segregation and interface energies, barriers for ion diffusion, admixture concentration, and the increasing surface basicity of the grains during processing. We outline the potential of admixtures on interface engineering in MgO nanocrystal-derived ceramics and demonstrate that in the sintered compacts, the photoluminescence emission originating from the grain surfaces is retained. Interior parts of the ceramic, which are accessible to molecules from the gas phase, contribute with oxygen partial pressure-dependent intensities to light emission.

10.
Ultramicroscopy ; 224: 113260, 2021 May.
Artigo em Inglês | MEDLINE | ID: mdl-33774193

RESUMO

For most materials science oriented applications incoherent cathodoluminescence (CL) is of main interest, for which the recombination of electron-hole pairs yields the emission of light. However, the incoherent signal is superimposed by coherently excited photons, similar to the situation for X-rays in Energy-Dispersive X-ray spectra (EDX). In EDX two very different processes superimpose in each spectrum: Bremsstrahlung and characteristic X-ray radiation. Both processes yield X-rays, however, their origin is substantially different. Therefore, in the present CL study we focus on the coherent emission of light, in particular Cerenkov radiation. We use a 200µm thick GaAs sample, not electron transparent and therefore not acting as a light guide, and investigate the radiation emitted from the top surface of the sample generated by back-scattered electrons on their way out of the specimen. The CL spectra revealed a pronounced peak corresponding to the expected interband transition. This peak was at 892 nm at room temperature and shifted to 845 nm at 80 K. The coherent light emission significantly modifies the shape of CL spectra at elevated beam energies. For the first time, by the systematic variation of current and energy of primary electrons we could distinguish the coherent and incoherent light superimposed in CL spectra. These findings are essential for the correct interpretation of CL spectra in STEM. The Cerenkov intensity as well as the total intensity in a spectrum scales linearly with the beam current. Additionally, we investigate the influence of asymmetric mirrors on the spectral shapes, collecting roughly only half of the whole solid angle. Different emission behaviour of different physical causes thus lead to changes in the overall spectral shape.

11.
ChemSusChem ; 14(4): 1112-1121, 2021 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-33337578

RESUMO

Nanostructured H2 V3 O8 is a promising high-capacity cathode material, suitable not only for Li+ but also for Na+, Mg2+ , and Zn2+ insertion. However, the full theoretical capacity for Li+ insertion has not been demonstrated experimentally so far. In addition, improvement of cycling stability is desirable. Modifications like substitution or prelithiation are possibilities to enhance the electrochemical performance of electrode materials. Here, for the first time, the substitution of vanadium sites in H2 V3 O8 with molybdenum was achieved while preserving the nanostructure by combining a soft chemical synthesis approach with a hydrothermal process. The obtained Mo-substituted vanadate nanofibers were further modified by prelithiation. While pristine H2 V3 O8 showed an initial capacity of 223 mAh g-1 and a retention of 79 % over 30 cycles, combining Mo substitution and prelithiation led to a superior initial capacity of 312 mAh g-1 and a capacity retention of 94 % after 30 cycles.

12.
Chemistry ; 26(68): 16049-16056, 2020 Dec 04.
Artigo em Inglês | MEDLINE | ID: mdl-32677720

RESUMO

Atomic dispersion of dopants and control over their defect chemistry are central goals in the development of oxide nanoparticles for functional materials with dedicated electronic, optical or magnetic properties. We produced highly dispersed oxide nanocubes with atomic distribution of cobalt ions in substitutional sites of the MgO host lattice via metal organic chemical vapor synthesis. Vacuum annealing of the nanoparticle powders up to 1173 K has no effect on the shape of the individual particles and only leads to moderate particle coarsening. Such materials processing, however, gives rise to the electronic reduction of particle surfaces, which-upon O2 admission-stabilize anionic oxygen radicals that are accessible to UV/Vis diffuse reflectance and electron paramagnetic resonance (EPR) spectroscopy. Multi-reference quantum chemical calculations show that the optical bands observed mainly originate from transitions into 4 A2g (4 F), 4 T1g (4 P) states with a contribution of transitions into 2 T1g , 2 T2g (2 G) states through spin-orbit coupling and gain intensity through vibrational motion of the MgO lattice or the asymmetric ion field. Related nanostructures are a promising material system for single atomic site catalysis. At the same time, it represents an extremely valuable model system for the study of interfacial electron transfer processes that are key to nanoparticle chemistry and photochemistry at room temperature, and in heterogeneous catalysis.

13.
J Chem Phys ; 152(7): 074713, 2020 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-32087664

RESUMO

Microstructure, structure, and compositional homogeneity of metal oxide nanoparticles can change dramatically during catalysis. Considering the different stabilities of cobalt and iron ions in the MgO host lattice [M. Niedermaier et al., J. Phys. Chem. C 123, 25991 (2019)], we employed MgO nanocube powders with or without transition metal admixtures for the oxidative coupling of methane (OCM) reaction to analyze characteristic differences in catalytic activity and sintering behavior. Undoped MgO nanocrystals exhibit the highest C2 selectivity and retain the nanocrystallinity of the starting material after 24 h time on stream. For the Co-Mg-O nanoparticle powder, which exhibits the highest activity and COx selectivity and where OCM-induced coarsening is strongest, we found that the Co2+ ions remain homogeneously distributed over the MgO lattice. Trivalent Fe ions migrate to the surface of Fe-Mg-O nanoparticles where they form a magnesioferrite phase (MgFe2O4) with a characteristic impact on catalytic performance: Fe-Mg-O is initially less selective than MgO despite its lower activity. An increase in C2 selectivity and a decrease in the CO2/CO ratio with time on stream are attributed to the increasing fraction of coarsened particles that become depleted in redox active Fe. Surface water is a by-product of the OCM reaction, favors mass transport across the particle surfaces, and serves as a sintering aid during catalysis. The characteristic changes in size and morphology of MgO, Co-doped, and Fe-doped MgO particles can be consistently explained by activity and C2 selectivity trends. The original morphology of the nanocubes as a starting material for the OCM reaction does not impact the catalytic activity.

14.
ACS Appl Mater Interfaces ; 11(43): 39859-39874, 2019 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-31585043

RESUMO

A sequence of chemical vapor synthesis and thermal annealing in defined gas atmospheres was used to prepare phase-pure anatase TiO2 nanocrystal powders featuring clean surfaces and a narrow particle size distribution with a median particle diameter of 14.5 ± 0.5 nm. Random networks of these nanocrystals were immobilized from aqueous dispersions onto conducting substrates and are introduced as model systems for electronic conductivity studies. Thermal annealing of the immobilized films at 100 °C < T < 450 °C in air was performed to generate particle-particle contacts upon virtual preservation of the structural properties of the nanoparticle films. The distribution of electrochemically active electronic states as well as the dependence of the electronic conductivity on the Fermi level position in the semiconductor films was studied in aqueous electrolytes in situ using electrochemical methods. An exponential distribution of surface states is observed to remain unchanged upon sintering. However, capacitive peaks corresponding to deep electron traps in the nanoparticle films shift positive on the potential scale evidencing an increase of the trapping energy upon progressive thermal annealing. These peaks are attributed to trap states at particle-particle interfaces in the random nanocrystal network (i.e., at grain boundaries). In the potential region, where the capacitive peaks are detected, we observe an exponential conductivity variation by up to 5 orders of magnitude. The potential range featuring the exponential conductivity variation shifts positive by up to 0.15 V when increasing the sintering temperature from 100 to 450 °C. Importantly, all films approach a potential- and sintering-temperature-independent maximum conductivity of ∼10-4 Ω-1·cm-1 at more negative potentials. On the basis of these results we introduce a qualitative model, which highlights the detrimental impact of electron traps located on particle-particle interfaces on the electronic conductivity in random semiconductor nanoparticle networks.

15.
ChemNanoMat ; 5(5): 634-641, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-31231606

RESUMO

Metal oxide nanocomposites are non-equilibrium solids and promising precursors for functional materials. Annealing of such materials can provide control over impurity segregation and, depending on the level of consolidation, represents a versatile approach to engineer free surfaces, particle-particle interfaces and grain boundaries. Starting with indium-magnesium-oxide nanoparticle powders obtained via injection of an indium organic precursor into the magnesium combustion flame and subsequent particle quenching in argon, we investigated the stability of the trivalent In3+ ions in the host lattice of MgO nanoparticles by determining grain growth, morphology evolution and impurity segregation. The latter process is initiated by vacuum annealing at 873 K and can be tracked at 1173 K on a time scale of minutes. In the first instance the surface segregated indium wets the nanoparticle interfaces. After prolonged annealing indium evaporates and leaves the powder via the gas phase. Resulting MgO nanocubes are devoid of residual indium, regain their high morphological definition and show spectroscopic fingerprints (UV Diffuse Reflectance and Photoluminescence emission) that are characteristic of electronically unperturbed MgO cube corner and edge features. The results of this combined XRD, TEM, and spectroscopy study reveal the parameter window within which control over indium segregation is used to introduce a semiconducting metal oxide component into the intergranular region between insulating MgO nanograins.

16.
ACS Appl Mater Interfaces ; 9(30): 25445-25454, 2017 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-28737921

RESUMO

Surface-enhanced Raman scattering (SERS) is a versatile spectroscopic technique that suffers from reproducibility issues and usually requires complex substrate fabrication processes. In this article, we report the use of a simple mass production technology based on Blu-ray disc manufacturing technology to prepare large area SERS substrates (∼40 mm2) with a high degree of homogeneity (±7% variation in Raman signal) and enhancement factor of ∼6 × 106. An industrial high throughput injection molding process was used to generate periodic microstructured polymer substrates coated with a thin Ag film. A short chemical etching step produces a highly dense layer of Ag nanoparticles at the polymer surface, which leads to a large and reproducible Raman signal. Finite difference time domain simulations and cathodoluminescence mapping experiments suggest that the sample microstructure is responsible for the generation of SERS active nanostructures around the microwells. Comparison with commercial SERS substrates demonstrates the validity of our method to prepare cost-efficient, reliable, and sensitive SERS substrates.

17.
J Nanobiotechnology ; 15(1): 55, 2017 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-28732539

RESUMO

BACKGROUND: Activity retention upon enzyme adsorption on inorganic nanostructures depends on different system parameters such as structure and composition of the support, composition of the medium as well as enzyme loading. Qualitative and quantitative characterization work, which aims at an elucidation of the microscopic details governing enzymatic activity, requires well-defined model systems. RESULTS: Vapor phase-grown and thermally processed anatase TiO2 nanoparticle powders were transformed into aqueous particle dispersions and characterized by dynamic light scattering and laser Doppler electrophoresis. Addition of ß-galactosidase (ß-gal) to these dispersions leads to complete enzyme adsorption and the generation of ß-gal/TiO2 heteroaggregates. For low enzyme loadings (~4% of the theoretical monolayer coverage) we observed a dramatic activity loss in enzymatic activity by a factor of 60-100 in comparison to that of the free enzyme in solution. Parallel ATR-IR-spectroscopic characterization of ß-gal/TiO2 heteroaggregates reveals an adsorption-induced decrease of the ß-sheet content and the formation of random structures leading to the deterioration of the active site. CONCLUSIONS: The study underlines that robust qualitative and quantitative statements about enzyme adsorption and activity retention require the use of model systems such as anatase TiO2 nanoparticle agglomerates featuring well-defined structural and compositional properties.


Assuntos
Nanopartículas/química , Titânio/química , beta-Galactosidase/química , Adsorção , Ativação Enzimática , Concentração de Íons de Hidrogênio , Microscopia Eletrônica de Varredura , Tamanho da Partícula , Porosidade , Propriedades de Superfície , Água
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA