Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 53
Filtrar
1.
Int J Pharm ; 653: 123794, 2024 Mar 25.
Artigo em Inglês | MEDLINE | ID: mdl-38216074

RESUMO

For proportionally formulated intermediate strengths of a topical product, the relationship of drug release across multiple strengths of a given product is not always well understood. The current study aims to assess the proportionality of tretinoin release rates across multiple strengths of tretinoin topical gels when manufactured using two different methods to understand the impact of formulation design on drug product microstructure and tretinoin release rate. Two groups of tretinoin gels of 0.04 %, 0.06 %, 0.08 % and 0.1 % strengths were manufactured. Gels in Group I were prepared by incorporating 4-10 % g/g of 1 % w/w tretinoin-loaded microparticles into a gel base. Gels in Group II were manufactured using 10 % g/g of the microparticles that were loaded with increasing amounts (0.4-1 % w/w) of tretinoin. The two groups of gels were characterized by evaluating microstructure using a polarized microscope, rheology using an oscillatory rheometer, and drug release using Vison® Microette™ Hanson vertical diffusion cells. The microscopic images were used to discriminate between the two groups of gels based on the abundance of microparticles in the gel matrix observed in the images. This abundance increased across gels of Group I and was similar across gels of Group II. The rheology parameters, namely viscosity at a shear rate of 10 s-1, shear thinning rate, storage, and loss modulus, increased across gels of Group I, and were not significantly different across gels of Group II. The release rate of tretinoin from the drug products was proportional to the nominal strength of the drug product in both Group I and Group II, with a correlation coefficient of 0.95 in each case, although the absolute release rates differed. Overall, changing the formulation design of tretinoin topical gels containing porous microparticles may change the physicochemical and structural properties, as well as the drug release rate of the product. Further, keeping the formulation design consistent across all strengths of microparticle-based topical gels is important to achieve proportional release rates across multiple strengths of a given drug product.


Assuntos
Tretinoína , Liberação Controlada de Fármacos , Porosidade , Géis/química , Viscosidade
2.
Int J Pharm ; 620: 121748, 2022 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-35427749

RESUMO

Drug release from microparticle-based topical gels may affect their bioavailability, safety and efficacy. This work sought to elucidate spatial distribution of the drug within the microparticle matrix and how this impacts the product's critical performance attributes. The purpose of this research was to inform the development of in vitro characterization approaches to support a demonstration of bioequivalence. Drug-free microparticles were loaded with tretinoin or drug-loaded microparticles were separated from purchased Retin-A Micro® (tretinoin) topical gel drug products. The resultant microparticles were analyzed for tretinoin content, drug loading efficiency, morphology, surface topography, surface pore size distribution, particle size distribution and tretinoin release. The solid-state characteristics and chemical interaction of tretinoin with the microparticles were also investigated. Microparticles loaded with tretinoin made in-house and those separated from Retin-A Micro® (tretinoin) topical gel were spherical, polydisperse and free of aggregates. The surface porosity of the microparticles was ∼19.8% with an average pore size of ∼327 nm. Microparticles loaded with tretinoin in-house were smaller in size and exhibited faster drug release than those separated from Retin-A Micro® (tretinoin) topical gel. Tretinoin release was found to increase with an increase in the drug loading. Based on XRD and DSC data, tretinoin was present in an amorphous state. The FTIR spectra indicated a disappearance of carbonyl band of microparticles and shifting of the hydroxyl band of tretinoin due to hydrogen bonding. The extent of drug loading and the solid-state interaction of tretinoin with the microparticles may be critical for drug release. Additional characterization of the drug products is necessary to understand the effect of the factors examined in this work on the bioavailability and efficacy of tretinoin gels.


Assuntos
Portadores de Fármacos , Tretinoína , Disponibilidade Biológica , Portadores de Fármacos/química , Liberação Controlada de Fármacos , Géis/química , Tamanho da Partícula
3.
Pharmaceutics ; 13(10)2021 Oct 19.
Artigo em Inglês | MEDLINE | ID: mdl-34684026

RESUMO

This work aimed to develop a three-dimensional printed (3DP) tablet containing glimepiride (GLMP) and/or rosuvastatin (RSV) for treatment of dyslipidemia in patients with diabetes. Curcumin oil was extracted from the dried rhizomes of Curcuma longa and utilized to develop a self-nanoemulsifying drug delivery system (SNEDDS). Screening mixture experimental design was conducted to develop SNEDDS formulation with a minimum droplet size. Five different semi-solid pastes were prepared and rheologically characterized. The prepared pastes were used to develop 3DP tablets using extrusion printing. The quality attributes of the 3DP tablets were evaluated. A non-compartmental extravascular pharmacokinetic model was implemented to investigate the in vivo behavior of the prepared tablets and the studied marketed products. The optimized SNEDDS, of a 94.43 ± 3.55 nm droplet size, was found to contain 15%, 75%, and 10% of oil, polyethylene glycol 400, and tween 80, respectively. The prepared pastes revealed a shear-thinning of pseudoplastic flow behavior. Flat-faced round tablets of 15 mm diameter and 5.6-11.2 mm thickness were successfully printed and illustrated good criteria for friability, weight variation, and content uniformity. Drug release was superior from SNEDDS-based tablets when compared to non-SNEDDS tablets. Scanning electron microscopy study of the 3DP tablets revealed a semi-porous surface that exhibited some curvature with the appearance of tortuosity and a gel porous-like structure of the inner section. GLMP and RSV demonstrated relative bioavailability of 159.50% and 245.16%, respectively. Accordingly, the developed 3DP tablets could be considered as a promising combined oral drug therapy used in treatment of metabolic disorders. However, clinical studies are needed to investigate their efficacy and safety.

5.
Int J Pharm ; 590: 119914, 2020 Nov 30.
Artigo em Inglês | MEDLINE | ID: mdl-32979451

RESUMO

To understand effects of formulation variables on the critical quality attributes (CQA) of acyclovir topical cream, this study investigated effects of propylene glycol (PG), poloxamer, and sodium lauryl sulfate (SLS) concentrations, acyclovir particle size, and formulation pH of the acyclovir cream. Fifteen formulations were prepared and characterized for rheological properties, particle size distribution, drug release and in vitro skin permeation. Drug distribution between various phases of the cream was determined. The concentration of soluble acyclovir in the aqueous phase was determined as a surrogate of the equilibrium with other acyclovir species in the cream. The interaction among effects of the formulation variables on the amount of acyclovir retained by skin was also evaluated. The results showed that PG significantly (p < 0.05) increased the yield stress, viscosity, drug concentration in the aqueous phase, and drug release. The PG and SLS significantly (p < 0.05) increased acyclovir retention by skin samples. Particle size of acyclovir inversely affected the drug release. This study revealed that the employed concentrations of PG and SLS and particle size of the dispersed acyclovir are critical formulation variables that should be carefully controlled when developing acyclovir topical creams with desired performance characteristics.


Assuntos
Aciclovir , Antivirais , Aciclovir/metabolismo , Antivirais/metabolismo , Liberação Controlada de Fármacos , Pele/metabolismo , Absorção Cutânea
6.
Int J Pharm ; 586: 119572, 2020 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-32599131

RESUMO

The current study investigated the use of synthetic membranes in developing a bio-predictive in vitro permeation testing (IVPT) method for 1.62% testosterone gel. The IVPT studies were carried out using both Franz (FC), and Flow-through (FTC) diffusion cells. The experimental variables included the type of synthetic membranes (hydrophilic polyamide nylon, polysulfone tuffryn and STRAT-M (SM) membrane) and the type of receiver media (phosphate buffer containing various concentrations of sodium lauryl sulfate). In vivo drug release rates were obtained from published reports for 1.62% testosterone gel applied to either abdominal area (treatment group A), upper arms/shoulders (treatment group B), or alternating between abdomen and arms/shoulders (treatment group C). The in vitro-in vivo correlations were established using GastroPlus software. The best IVPT method was selected based on establishing point-to-point correlation with the in vivo data of treatment group A with minimal prediction errors (%PE) of AUC0-24 and Cmax. The results showed that the IVPT method which employed the FTC diffusion system, SM membrane and phosphate buffer without surfactant established the best IVIVR model with a correlation coefficient (R2) of 0.9966 and an exponential function of Y = (1.35)5 × X3.6. The in vivo data obtained from treatment group A and B was used for internal validation of the prediction model. The validation data was acceptable, with %PE of less than 10% for both AUC0-24 and Cmax. In conclusion, these results suggest that bio-predictive IVPT methods for testosterone gels may be developed using synthetic membranes and diffusion apparatus by varying the composition of the receiver medium.


Assuntos
Membranas Artificiais , Absorção Cutânea , Pele/metabolismo , Testosterona/administração & dosagem , Administração Cutânea , Área Sob a Curva , Difusão , Liberação Controlada de Fármacos , Géis , Humanos , Técnicas In Vitro , Masculino , Permeabilidade , Ensaios Clínicos Controlados Aleatórios como Assunto , Testosterona/farmacocinética
7.
Int J Pharm ; 578: 119131, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32057888

RESUMO

Study of mixing and segregation of granular materials was performed in a Bohle bin blender using both computational modeling and experiments. A multicomponent mixture of pharmaceutical excipients and coated theophylline granules, an active pharmaceutical ingredient (API) was considered as the blend formulation. A DEM (Discrete Element Method) Model was developed to simulate the flow and mixing of the multicomponent blend to compare with the experimental data. DEM is a numerical modeling technique which incorporates all the material properties (such as Particle size, density, elastic modulus, yield strength, Poisson's ratio, work function etc.)to simulate granular flow (such as mixing, conveying) of particles. In simulation, the degree (Relative standard deviation) of mixing in a Bohle bin blender was assessed as a function of critical processing parameters (loading pattern, rotational rate, and fill percentage). Numerical simulation results reveal radial mixing in a Bohle bin blender is faster than axial mixing due to symmetric geometry limitation. This study investigates a numerical model-based approach to study the effect of the critical process parameters on the mixing dynamics in Bohle bin blender for a moderately cohesive pharmaceutical formulation. The DEM model can be used to provide crucial insights to developed optimized mixing protocols to ascertain the best mixing conditions for different formulation. As for example, as we try to develop a mixing protocol for another formulation with different operational parameters such as loading pattern, rotational speed, and fill percentage, one can device an optimized mixing protocol of the formulation with the help of this DEM model.


Assuntos
Química Farmacêutica/métodos , Preparações Farmacêuticas/química , Benzodioxóis/química , Simulação por Computador , Excipientes/química , Lignanas/química , Tamanho da Partícula , Teofilina/química
8.
Int J Pharm ; 578: 119132, 2020 Mar 30.
Artigo em Inglês | MEDLINE | ID: mdl-32057892

RESUMO

This study investigated the effects of drug recrystallization on the in vitro performance of testosterone drug-in-adhesive transdermal delivery system (TDS). Six formulations were prepared with a range of dry drug loading in the adhesive matrix from 1% to 10% w/w with the aim of generating TDS with various levels of drug crystals. We visually quantified the amount of crystals in TDS by polarized light microscopy. The effect of drug recrystallization on adhesion, tackiness, cohesive strength, viscoelasticity, drug release, and drug permeation through human cadaver skin were evaluated for these TDS samples. The Optical images showed no crystals in 1% and 2% testosterone TDSs; however, the amount of crystals increased by increasing testosterone loading from 4 to 10%. A proportional and significant decrease (p < 0.05) in tack, peel, and shear strength of the adhesive matrix with increasing amount of crystals in TDS was observed. The drug crystals resulted in a proportional deterioration of the viscoelastic properties of the adhesive matrix. The 2% testosterone TDS showed faster drug release rate when compared to 1% testosterone TDS. The increase in drug loading from 2% to 4% w/w slightly increased the cumulative amount of testosterone released. Further increase in drug loading in TDS to 6, 8, and 10% was nonsignificant (p > 0.05) to affect the drug release and permeation. In conclusion, this study demonstrated that the extent of drug recrystallization can be quantitatively correlated with the deterioration of performance characteristics of TDS products.


Assuntos
Adesivos/química , Preparações Farmacêuticas/administração & dosagem , Preparações Farmacêuticas/química , Pele/efeitos dos fármacos , Testosterona/administração & dosagem , Testosterona/química , Administração Cutânea , Idoso , Cristalização/métodos , Sistemas de Liberação de Medicamentos/métodos , Liberação Controlada de Fármacos/efeitos dos fármacos , Humanos , Pessoa de Meia-Idade , Permeabilidade/efeitos dos fármacos , Reologia/métodos , Absorção Cutânea/efeitos dos fármacos , Adesivo Transdérmico
9.
Int J Pharm ; 575: 118909, 2020 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-31811923

RESUMO

Pseudoephedrine (PSE) extracted from its dosage forms can be used as the starting material to prepare methamphetamine by drug abusers. Recently, some pseudoephedrine drug products marketed under the over the counter (OTC) monograph have been promoted as 'meth-deterrent'. The goal of this investigation was to evaluate the extraction and dissolution of these product against controls of non-meth-deterrent products of pseudoephedrine. Immediate release (IR) PSE OTC Product-C, Product-D and Product-E with meth-deterrent claim on their packaging were selected for this study. Accordingly, OTC IR PSE tablet Product-A and OTC extended release (ER) PSE tablet Product-B, with no meth-deterrent claims, were used as controls. The extraction studies were performed on intact tablets or capsules and on manipulated products employing water, ethanol and 0.l N HCl as solvents. The extraction studies were also performed in water at elevated temperatures by heating the water in an oven and in a microwave. The dissolution studies were performed in water and 0.1 N HCl. The amount of PSE extracted from Product-C was found similar to the amount extracted from the non-meth-deterrent control Product-A. The amount of PSE extracted from Product-D and Product-E was found lower than the amount extracted from control Product-A under the conditions studied. Product-A, Product-B, and Product-C met their respective dissolution acceptance criteria. The IR Products D and E released less than 50% drug in 12 h and did not meet either IR or ER PSE tablet USP dissolution acceptance criteria. In summary, the extraction of Product-C was found to be high (approximately 85% in 30 min) and was similar in extraction to the control Product-A. The extraction of Product-D and Product-E was found less than the extraction of control Product-A. Also, Product-D and Product-E did not exhibit complete drug release. This study showed that PSE can be extracted from Product D and Product E.


Assuntos
Metanfetamina , Medicamentos sem Prescrição/química , Pseudoefedrina/química , Transtornos Relacionados ao Uso de Substâncias/prevenção & controle , Cápsulas , Celulose/análogos & derivados , Celulose/química , Preparações de Ação Retardada/química , Liberação Controlada de Fármacos , Galactanos/química , Mananas/química , Tamanho da Partícula , Gomas Vegetais/química , Óleos de Plantas/química , Polietilenoglicóis/química , Polissacarídeos Bacterianos/química , Comprimidos , Viscosidade
10.
Cogent Med ; 6(1)2019.
Artigo em Inglês | MEDLINE | ID: mdl-35531302

RESUMO

The primary objective of the research study is to investigate Glucose (GLUT) transporter targeting of the drug (Citalopram-Hbr) for increased permeability across the Blood-Brain Barrier (BBB). The current study reports the development, physicochemical characterization, cytotoxicity analysis and in-vitro BBB permeability assessment of the Citalopram-Hbr liposomal formulations. Rat Primary Brain Microvascular Endothelial Cells (RPBECs) were used for cytotoxicity analysis and drug permeability testing. Five N-Acetyl Glucosamine (NAG) coated PEGylated multilamellar liposomal formulations were prepared and tested. Permeability of the liposomal formulations was evaluated in RPBECs monolayer. The particle size of the formulations ranged from 13 to 4259 nm. Entrapment efficiency was 50-75%. Cytotoxicity analysis indicated viability (>90%) for all five formulations (0.3-1.25 mg/ml). Apparent drug permeability (Papp) of the formulations ranged from 5.01 × 104 to 15 × 104 cm/min. The study demonstrated successful preparation of NAG-coated PEGylated multilamellar liposomal formulations with high drug entrapment efficiency. Cytotoxicity data indicated that the formulations were well tolerated by the cells up to a concentration of 1.25 mg/ml. Transport study data demonstrated that RPBMECs monolayers can be employed as a robust screening tool for future drug transport studies targeting GLUT transporter on the BBB. The drug permeability values provide a promising preliminarily proof that NAG-coated liposomal formulations can be an effective tool for BBB-GLUT transporter targeting.

11.
Int J Pharm ; 553(1-2): 441-453, 2018 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-30385374

RESUMO

The objective of the current study was to optimize for the first time the formulation variables of self-emulsified drug delivery system (SEDDS) based on drug solubilization during lipolysis under a biorelevant condition of digestion such as lipase activity, temperature, pH, fed-fasting state, etc. Nimodipine (ND), a BCS class II, was used as a model drug to prepare the SEDDS. Various oils, surfactants, and cosurfactants were screened for their solubilization potential of ND. Area of self-emulsification was identified using various ternary phase diagrams. Box-Behnken design was employed to investigate effects of formulation variables on various dispersion, emulsification, and lipolysis characteristics of SEDDS. Among 26 candidate formulations, highest ND solubility of 12.72%, 11.09% and 11.2% w/w were obtained in peppermint oil as the oily phase, Cremphor EL as the surfactant and PEG400 as the cosurfactant, respectively. Cremphor EL was the most significant factor to decrease SEDDS droplet size to 30.16 nm. On the other hand, increasing the oil concentration was found to significantly increase the polydispersity index up to 0.31. A faster emulsification rate of 3.37%/min was obtained at higher Cremphor El/PEG 400 ratio. Increasing the percentage of lipid components of SEDDS resulted in lower rate of lipolysis with less recovery of ND in aqueous phase. Under fed state, percentage of lipolysis of optimized formulation was less than that observed under fasted state. However, lowest rate and percentage of lipolysis were observed in lipolysis media without phospholipids and bile salts. Hence, this study demonstrated that in vitro lipolysis could be used as a surrogate approach to distinguish effects of formulation variables on fate of SEDDS upon digestion. Further studies are in progress to identify the lipolytic products of the employed excipients by LC-MS/MS.


Assuntos
Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos , Lipólise/efeitos dos fármacos , Nimodipina/administração & dosagem , Administração Oral , Animais , Emulsões , Excipientes/química , Lipídeos/química , Nimodipina/química , Óleos/química , Tamanho da Partícula , Solubilidade , Tensoativos/química , Suínos
12.
Int J Pharm ; 532(1): 491-501, 2017 Oct 30.
Artigo em Inglês | MEDLINE | ID: mdl-28935251

RESUMO

Leachables derived from multi-component drug-device syringe systems can result in changes to the quality of drug products. Diphenylguanidine (DPG), a leachable released from styrene butadiene rubber syringe plungers, interacts with Oxytocin to form protein-adducts. This study investigated the mechanism and kinetics of this interaction in both solid and solution states through in-vitro tests and spectroscopic methods For solid state interaction, the protein-adducts with DPG were characterized using SEM, XRD, DSC, FTIR, 13C ss NMR, and dissolution analysis. For solution state interaction, LC-HRMS was used to assess stability of Oxytocin solutions in presence of various concentrations of DPG at 25°C and 40°C for 4 weeks. Moreover, molecular docking analysis was used to identify possible molecular configurations of the interaction.Results were consistent with the formation of a new solid state with distorted surface morphology for oxytocin-DPG adducts, in which the oxytocin carbonyl group(s) and the secondary amine groups of DPG interact. This interaction was also confirmed by molecular docking analysis through hydrogen bonding (2.31Å) and Van der Waal attraction (3.14Å). Moreover, LC-HRMS analysis revealed an increase in Oxytocin stability and suppression of Oxytocin dimerization by DPG. A potential reduction in the rate of Oxytocin dissolution from the formed adducts was indicative of its strong association with DPG. Hence, the leaching potential of DPG from rubber closures and plungers should be monitored and controlled to maintain the quality and stability of the pharmaceutical product.


Assuntos
Contaminação de Medicamentos , Guanidinas/química , Ocitocina/química , Borracha , Seringas , Embalagem de Medicamentos , Simulação de Acoplamento Molecular
13.
Drug Dev Ind Pharm ; 43(9): 1450-1459, 2017 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-28420295

RESUMO

Dermal drug delivery system which localizes methotrexate (MTX) in the skin is advantageous in topical treatment of psoriasis. The aim of the current study was to understand dilution effects and formulation variability for the potential formation of niosomes from proniosome gels of MTX. Box-Behnken's design was employed to prepare a series of MTX proniosome gels of Span 40, cholesterol (Chol-X1) and Tween 20 (T20-X2). Short chain alcohols (X3), namely ethanol (Et), propylene glycol (Pg) and glycerol (G) were evaluated for their dilution effects on proniosomes. The responses investigated were niosomal vesicles size (Y1), MTX entrapment efficiency percent (EE%-Y2) and zeta potential (Y3). MTX loaded niosomes were formed immediately upon hydration of the proniosome gels with the employed solvents. Addition of Pg resulted in a decrease of vesicular size from 534 nm to 420 nm as Chol percentage increased from 10% to 30%, respectively. In addition, increasing the hydrophilicity of the employed solvents was enhancing the resultant zeta potential. On the other hand, using Et in proniosomal gels would abolish Chol action to increase the zeta potential value and hence less stable niosomal dispersion was formed. The optimized formula of MTX loaded niosomes showed vesicle size of 480 nm, high EE% (55%) and zeta potential of -25.5 mV, at Chol and T20 concentrations of 30% and 23.6%, respectively, when G was employed as the solvent. Hence, G was the solvent of choice to prepare MTX proniosomal gels with a maintained stability and highest entrapment.


Assuntos
Colesterol/química , Sistemas de Liberação de Medicamentos/métodos , Géis/química , Hexoses/administração & dosagem , Hexoses/farmacocinética , Lipossomos/química , Lipossomos/metabolismo , Metotrexato/administração & dosagem , Metotrexato/farmacocinética , Pele/metabolismo , Solventes/química , Tensoativos/química , Administração Cutânea , Administração Tópica , Química Farmacêutica , Colesterol/metabolismo , Hexoses/química , Metotrexato/química , Solubilidade
14.
J Pharm Sci ; 106(7): 1805-1813, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28341597

RESUMO

The objective of the present study was to investigate the effect of isopropyl myristate (IPM) on the in vitro permeation of testosterone through human cadaver skin from carbopol gels. Six testosterone gel formulations were prepared using different IPM contents of 0%, 0.4%, 0.7%, 1%, 2%, and 3%. The gels were characterized for drug permeation, matrix morphology, pH, kinetics of ethanol evaporation, and viscosity. Mass balance studies were performed to estimate testosterone distribution among the compartments of diffusion cells. All formulations exhibited pH values of 5.1 and viscosities of 1.25-1.75 Pa.s depending on IPM contents. Under occlusive condition, testosterone flux was found to increase significantly (p < 0.05) by increasing IPM content. Gels containing 2% IPM exhibited 11-fold increase in flux compared with formulation devoid of IPM. Ethanol was found to have a synergistic effect with IPM in enhancing testosterone flux. Mass balance analysis showed that testosterone was in a saturated state in the skin. Conducting permeation experiments under nonocclusive condition was nondiscriminating because of the evaporation of alcohol and consequent precipitation of drugs. Based on demonstrated effect of IPM on product performance, the final IPM concentration should be controlled with minimal variation during manufacturing and shelf life of drug product.


Assuntos
Resinas Acrílicas/química , Portadores de Fármacos/química , Miristatos/química , Absorção Cutânea , Testosterona/administração & dosagem , Testosterona/farmacocinética , Administração Cutânea , Géis/química , Humanos , Pele/metabolismo
15.
Clin Pharmacol ; 9: 29-38, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28260952

RESUMO

Tenofovir, currently marketed as the prodrug tenofovir disoproxil fumarate, is used clinically to treat patients with HIV/AIDS. The oral bioavailability of tenofovir is relatively low, limiting its clinical effectiveness. Encapsulation of tenofovir within modified long-circulating liposomes would deliver this hydrophilic anti-HIV drug to the reticuloendothelial system for better therapeutic efficacy. The objectives of the current study were to prepare and pharmaceutically characterize model liposomal tenofovir formulations in an attempt to improve their bioavailability. The entrapment process was performed using film hydration method, and the formulations were characterized in terms of encapsulation efficiency and Caco-2 permeability. An efficient reverse-phase high-performance liquid chromatography method was developed and validated for tenofovir quantitation in both in vitro liposomal formulations and Caco-2 permeability samples. Separation was achieved isocratically on a Waters Symmetry C8 column using 10 mM Na2PO4/acetonitrile pH 7.4 (95:5 v/v). The flow rate was 1 mL/min with a 12 min elution time. Injection volume was 10 µL with ultraviolet detection at 270 nm. The method was validated according to United States Pharmacopeial Convention category I requirements. The obtained result showed that tenofovir encapsulation within the prepared liposomes was dependent on the employed amount of the positive charge-imparting agent. The obtained results indicated that calibration curves were linear with r2 > 0.9995 over the analytical range of 1-10 µg/mL. Inter- and intraday accuracy and precision values ranged from 95% to 101% and 0.3% to 2.6%, respectively. The method was determined to be specific and robust. Regarding the potential of the prepared vectors to potentiate tenofovir permeability through the Caco-2 model, a 10-fold increase in tenofovir apparent permeability was observed compared to its oral solution. In conclusion, this novel and validated method was successfully applied to characterize both in vitro encapsulation efficiency and Caco-2 permeability transport for the pharmaceutical assessment of novel tenofovir formulations.

16.
Int J Pharm ; 517(1-2): 303-311, 2017 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-27956191

RESUMO

The objective of the present investigation was to understand the effects of excipients and curing process on the abuse deterrent properties (ADP) of Polyox™ based directly compressible abuse deterrent tablet formulations (ADFs). The excipients investigated were lactose (monohydrate or anhydrous), microcrystalline cellulose and hydroxypropyl methylcellulose. The ADPs studied were tablet crush resistance or hardness, particle size distribution following mechanical manipulation, drug extraction in water and alcohol, syringeability and injectability. Other non-ADPs such as surface morphology and tablet dissolution were also studied. It was found that presence of 50% or more of water soluble or swellable excipient in the ADF tablets significantly affected the tablet hardness, particle size distribution following mechanical manipulation and drug extraction while small amount (5%) of excipients had either minimal or no effect on ADPs of these tablets. Addition of high molecular weight HPMC (K 100M) affected syringeability and injectability of ADF. Curing process was found to affect ADPs (hardness, particle size distribution, drug extraction and syringeability and injectability) when compared with uncured tablet. In conclusion, addition of large amount of excipients, especially water soluble ones in Polyox™ based ADF tablets increase the risk of abuse by various routes of administration.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Lactose/química , Comprimidos/química , Celulose/química , Liberação Controlada de Fármacos , Dureza , Derivados da Hipromelose/química , Injeções , Tamanho da Partícula , Polietilenoglicóis/química , Solubilidade , Sotalol/química , Sotalol/farmacocinética
17.
Pharm Dev Technol ; 22(4): 492-499, 2017 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26512747

RESUMO

This study aimed at employing Plackett-Burman design in screening formulation variables that affect quality of matrix-type simvastatin (SMV) transdermal film. To achieve this goal, 12 formulations were prepared by casting method. The investigated variables were Eudragit RL percentage, polymer mixture percentage, plasticizer type, plasticizer percentage, enhancer type, enhancer percentage and dichloromethane fraction in organic phase. The films were evaluated for physicochemical properties and ex vivo SMV permeation. SMV initial, delayed flux, diffusivity and permeability coefficient were calculated on the delayed flux phase with constraint to minimize the initial flux and approaching steady-state flux. The obtained results revealed flat films with homogeneous distribution of SMV within the films. Thickness values changed from 65 to 180 µm by changing the factors' combinations. Most of the permeation profiles showed sustained release feature with fast permeation phase followed by slow phase. Analysis of variance (ANOVA) showed significant effects (p < 0.05) of the investigated variables on the responses with Prob > F values of 0.0147, 0.0814, 0.0063 and 0.0142 for the initial and delayed fluxes, permeability coefficients and diffusivities, respectively. The findings of screening study showed the importance of the significant variables to be scaled up for full optimization study as a promising alternative drug delivery system.


Assuntos
Anticolesterolemiantes/administração & dosagem , Polímeros/química , Sinvastatina/administração & dosagem , Absorção Cutânea , Adesivo Transdérmico , Administração Cutânea , Animais , Anticolesterolemiantes/farmacocinética , Masculino , Permeabilidade , Ratos Wistar , Sinvastatina/farmacocinética , Pele/metabolismo
18.
Pharm Dev Technol ; 22(2): 173-183, 2017 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26811031

RESUMO

Through the integration of orthogonal central composite design and desirability function, this work aimed to explore the potential of quality by design in understanding the formulation of phospholipid-stabilized tacrolimus nanodispersions by microfluidization. The influence of homogenization pressure, microfluidization time and phospholipid concentration (X1-X3) on nanodispersion performance was studied. Nanodispersions were characterized by differential scanning calorimetric (DSC), X-ray diffractometer (XRD) and Fourier transform infrared (FTIR) analysis. Moreover, masking the unpalatable taste of tacrolimus and reducing the gastric complications were also evaluated. FTIR analysis indicated its interaction with phospholipid. DSC and XRD analysis revealed the amorphous transformation of tacrolimus within nanodispersions. The dissolution was enhanced by 35 folds and 15 folds after 0.5 and 2 h, respectively. Maximum tacrolimus content, yield, polydispersity index, percentages dissolved after 0.5 and 2 h of 99.3%, 100%, 0.864, 39.7% and 95.3%, respectively, with particle size of 160 nm were obtained at X1, X2 and X3 values of 20 000 psi, 6 min and 30%, respectively. The Euclidean distance values demonstrated masking the unpalatable taste and taste perversion to stimuli of tacrolimus in its optimized nanodispersion. Moreover, the ulcerative indices following raw tacrolimus and its optimized nanodispersion oral administration were 6.73 and 2.45, respectively, to indicate that nanodispersion was significantly less irritating to the gastric mucosa.


Assuntos
Composição de Medicamentos/métodos , Excipientes/química , Trato Gastrointestinal/efeitos dos fármacos , Imunossupressores/química , Fosfolipídeos/química , Tacrolimo/química , Percepção Gustatória/efeitos dos fármacos , Animais , Nariz Eletrônico , Humanos , Imunossupressores/efeitos adversos , Imunossupressores/metabolismo , Masculino , Ratos Sprague-Dawley , Solubilidade , Tacrolimo/efeitos adversos , Tacrolimo/metabolismo , Paladar/efeitos dos fármacos
19.
Int J Nanomedicine ; 11: 1501-16, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27110111

RESUMO

Nicotinamide, the amide form of vitamin B3, was demonstrated to combat some of the antibiotic-resistant infections that are increasingly common around the world. The objective of this study was to thoroughly understand the formulation and process variabilities affecting the preparation of nicotinamide-loaded polymeric nanoemulsified particles. The quality target product profile and critical quality attributes of the proposed product were presented. Plackett-Burman screening design was employed to screen eight variables for their influences on the formulation's critical characteristics. The formulations were prepared by an oil-in-water emulsification followed by solvent replacement. The prepared systems were characterized by entrapment capacity (EC), entrapment efficiency (EE), particle size, polydispersity index, zeta potential, transmission electron microscopy, Fourier transform infrared spectroscopy, differential scanning calorimetry, powder X-ray diffraction, in vitro drug release, and their antibacterial activity against bacterial scrums. EC, EE, particle size, polydispersity index, zeta potential, and percentage release in 24 hours were found to be in the range of 33.5%-68.8%, 53.1%-67.1%, 43.3-243.3 nm, 0.08-0.28, 9.5-53.3 mV, and 5.8%-22.4%, respectively. One-way analysis of variance and Pareto charts revealed that the experimental loadings of 2-hydroxypropyl-ß-cyclodextrin and Eudragit(®) S100 were the most significant for their effects on nicotinamide EC and EE. Moreover, the polymeric nanoemulsified particles demonstrated a sustained release profile for nicotinamide. The Fourier transform infrared spectroscopy, differential scanning calorimetry, and X-ray diffraction demonstrated a significant interaction between the drug and 2-hydroxypropyl-ß-cyclodextrin that might modulate the sustained release behavior. Furthermore, the formulations provided a sustained antibacterial activity that depended on nicotinamide-loading concentration, release rate, and incubation time. In conclusion, the study demonstrated the potential of polymeric nanoemulsified system to sustain the release and antibacterial activity of nicotinamide.


Assuntos
Anti-Infecciosos/farmacologia , Bactérias/efeitos dos fármacos , Desenho de Fármacos , Niacinamida/química , Polímeros/química , Complexo Vitamínico B/farmacologia , 2-Hidroxipropil-beta-Ciclodextrina , Anti-Infecciosos/química , Varredura Diferencial de Calorimetria , Química Farmacêutica , Niacinamida/farmacologia , Tamanho da Partícula , Polímeros/farmacologia , Espectroscopia de Infravermelho com Transformada de Fourier , Complexo Vitamínico B/química , Difração de Raios X , beta-Ciclodextrinas/metabolismo
20.
AAPS PharmSciTech ; 17(6): 1404-1420, 2016 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-26786680

RESUMO

Effectiveness of CNS-acting drugs depends on the localization, targeting, and capacity to be transported through the blood-brain barrier (BBB) which can be achieved by designing brain-targeting delivery vectors. Hence, the objective of this study was to screen the formulation and process variables affecting the performance of sertraline (Ser-HCl)-loaded pegylated and glycosylated liposomes. The prepared vectors were characterized for Ser-HCl entrapment, size, surface charge, release behavior, and in vitro transport through the BBB. Furthermore, the compatibility among liposomal components was assessed using SEM, FTIR, and DSC analysis. Through a thorough screening study, enhancement of Ser-HCl entrapment, nanosized liposomes with low skewness, maximized stability, and controlled drug leakage were attained. The solid-state characterization revealed remarkable interaction between Ser-HCl and the charging agent to determine drug entrapment and leakage. Moreover, results of liposomal transport through mouse brain endothelialpolyoma cells demonstrated greater capacity of the proposed glycosylated liposomes to target the cerebellar due to its higher density of GLUT1 and higher glucose utilization. This transport capacity was confirmed by the inhibiting action of both cytochalasin B and phenobarbital. Using C6 glioma cells model, flow cytometry, time-lapse live cell imaging, and in vivo NIR fluorescence imaging demonstrated that optimized glycosylated liposomes can be transported through the BBB by classical endocytosis, as well as by specific transcytosis. In conclusion, the current study proposed a thorough screening of important formulation and process variabilities affecting brain-targeting liposomes for further scale-up processes.


Assuntos
Encéfalo/efeitos dos fármacos , Lipossomos/química , Sertralina/administração & dosagem , Sertralina/química , Animais , Transporte Biológico/fisiologia , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Neoplasias Encefálicas/tratamento farmacológico , Linhagem Celular Tumoral , Química Farmacêutica/métodos , Sistemas de Liberação de Medicamentos/métodos , Glioma/tratamento farmacológico , Transportador de Glucose Tipo 1/metabolismo , Lipossomos/administração & dosagem , Camundongos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA