Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 47
Filtrar
1.
J Med Chem ; 63(15): 8025-8042, 2020 08 13.
Artigo em Inglês | MEDLINE | ID: mdl-32338514

RESUMO

Inhibition of monopolar spindle 1 (MPS1) kinase represents a novel approach to cancer treatment: instead of arresting the cell cycle in tumor cells, cells are driven into mitosis irrespective of DNA damage and unattached/misattached chromosomes, resulting in aneuploidy and cell death. Starting points for our optimization efforts with the goal to identify MPS1 inhibitors were two HTS hits from the distinct chemical series "triazolopyridines" and "imidazopyrazines". The major initial issue of the triazolopyridine series was the moderate potency of the HTS hits. The imidazopyrazine series displayed more than 10-fold higher potencies; however, in the early project phase, this series suffered from poor metabolic stability. Here, we outline the evolution of the two hit series to clinical candidates BAY 1161909 and BAY 1217389 and reveal how both clinical candidates bind to the ATP site of MPS1 kinase, while addressing different pockets utilizing different binding interactions, along with their synthesis and preclinical characterization in selected in vivo efficacy models.


Assuntos
Antineoplásicos/metabolismo , Proteínas de Ciclo Celular/metabolismo , Sistemas de Liberação de Medicamentos/métodos , Descoberta de Drogas/métodos , Pontos de Checagem da Fase M do Ciclo Celular/efeitos dos fármacos , Proteínas Serina-Treonina Quinases/metabolismo , Proteínas Tirosina Quinases/metabolismo , Fuso Acromático/efeitos dos fármacos , Animais , Antineoplásicos/química , Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Cães , Feminino , Células HT29 , Células HeLa , Humanos , Pontos de Checagem da Fase M do Ciclo Celular/fisiologia , Masculino , Microssomos Hepáticos/efeitos dos fármacos , Microssomos Hepáticos/metabolismo , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Estrutura Terciária de Proteína , Proteínas Tirosina Quinases/antagonistas & inibidores , Ratos , Ratos Wistar , Fuso Acromático/metabolismo , Resultado do Tratamento
2.
Mol Cancer Ther ; 19(1): 26-38, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31582533

RESUMO

The DNA damage response (DDR) secures the integrity of the genome of eukaryotic cells. DDR deficiencies can promote tumorigenesis but concurrently may increase dependence on alternative repair pathways. The ataxia telangiectasia and Rad3-related (ATR) kinase plays a central role in the DDR by activating essential signaling pathways of DNA damage repair. Here, we studied the effect of the novel selective ATR kinase inhibitor BAY 1895344 on tumor cell growth and viability. Potent antiproliferative activity was demonstrated in a broad spectrum of human tumor cell lines. BAY 1895344 exhibited strong monotherapy efficacy in cancer xenograft models that carry DNA damage repair deficiencies. The combination of BAY 1895344 with DNA damage-inducing chemotherapy or external beam radiotherapy (EBRT) showed synergistic antitumor activity. Combination treatment with BAY 1895344 and DDR inhibitors achieved strong synergistic antiproliferative activity in vitro, and combined inhibition of ATR and PARP signaling using olaparib demonstrated synergistic antitumor activity in vivo Furthermore, the combination of BAY 1895344 with the novel, nonsteroidal androgen receptor antagonist darolutamide resulted in significantly improved antitumor efficacy compared with respective single-agent treatments in hormone-dependent prostate cancer, and addition of EBRT resulted in even further enhanced antitumor efficacy. Thus, the ATR inhibitor BAY 1895344 may provide new therapeutic options for the treatment of cancers with certain DDR deficiencies in monotherapy and in combination with DNA damage-inducing or DNA repair-compromising cancer therapies by improving their efficacy.


Assuntos
Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Dano ao DNA/efeitos dos fármacos , Neoplasias/tratamento farmacológico , Animais , Feminino , Humanos , Camundongos
3.
Stroke ; 50(11): 3004-3012, 2019 11.
Artigo em Inglês | MEDLINE | ID: mdl-31558144

RESUMO

Background and Purpose- Coagulation factor XI (FXI) is a novel target for antithrombotic therapy addressed by various therapeutic modalities currently in clinical development. The expected magnitude of thrombotic event reduction mediated by targeting FXI is unclear. Methods- We analyzed the association of 2 common genetic variants, which alter levels of FXI, with a range of human phenotypes. We combined variants into a genetic score standardized to a 30% increase in relative activated partial thromboplastin time, equivalent to what can be achieved with pharmacological FXI reduction. Using data from 371 695 participants in the United Kingdom Biobank and 2 large-scale genome-wide association studies, we examined the effect of this FXI score on thrombotic and bleeding end points. Results- Genetic disposition to lower FXI levels was associated with reduced risks of venous thrombosis (odds ratio, 95% CI; P value; odds ratio=0.1, 0.07-0.14; P=3×10-43) and ischemic stroke (odds ratio=0.47, 0.36-0.61; P=2×10-8) but not with major bleeding (odds ratio=0.7, 0.45-1.04; P=0.0739). The observed relative risk reductions were consistent within a range of subgroups that were at high risk for thrombosis. Consistently, we observed higher absolute risk reductions conferred by genetically lower FXI levels in high-risk subgroups, such as patients with atrial fibrillation. Conclusions- Human genetic data suggest that pharmacological inhibition of FXI may achieve considerable reductions in ischemic stroke risk without clear evidence for an associated risk of major bleeding. The quantitative framework developed can be used to support the estimation of achievable risk reductions with pharmacological modulation of FXI.


Assuntos
Bancos de Espécimes Biológicos , Fator XI , Variação Genética , Hemorragia , Acidente Vascular Cerebral , Trombose Venosa , Adulto , Estudos Transversais , Fator XI/genética , Fator XI/metabolismo , Feminino , Estudo de Associação Genômica Ampla , Hemorragia/sangue , Hemorragia/genética , Genética Humana , Humanos , Masculino , Pessoa de Meia-Idade , Tempo de Tromboplastina Parcial , Fatores de Risco , Acidente Vascular Cerebral/sangue , Acidente Vascular Cerebral/genética , Reino Unido , Trombose Venosa/sangue , Trombose Venosa/genética
4.
Clin Cancer Res ; 25(15): 4723-4734, 2019 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-31064781

RESUMO

PURPOSE: Targeted thorium-227 conjugates (TTC) represent a new class of molecules for targeted alpha therapy (TAT). Covalent attachment of a 3,2-HOPO chelator to an antibody enables specific complexation and delivery of the alpha particle emitter thorium-227 to tumor cells. Because of the high energy and short penetration range, TAT efficiently induces double-strand DNA breaks (DSB) preferentially in the tumor cell with limited damage to the surrounding tissue. We present herein the preclinical evaluation of a mesothelin (MSLN)-targeted thorium-227 conjugate, BAY 2287411. MSLN is a GPI-anchored membrane glycoprotein overexpressed in mesothelioma, ovarian, pancreatic, lung, and breast cancers with limited expression in healthy tissue. EXPERIMENTAL DESIGN: The binding activity and radiostability of BAY 2287411 were confirmed bioanalytically. The mode-of-action and antitumor potency of BAY 2287411 were investigated in vitro and in vivo in cell line and patient-derived xenograft models of breast, colorectal, lung, ovarian, and pancreatic cancer. RESULTS: BAY 2287411 induced DSBs, apoptotic markers, and oxidative stress, leading to reduced cellular viability. Furthermore, upregulation of immunogenic cell death markers was observed. BAY 2287411 was well-tolerated and demonstrated significant antitumor efficacy when administered via single or multiple dosing regimens in vivo. In addition, significant survival benefit was observed in a disseminated lung cancer model. Biodistribution studies showed specific uptake and retention of BAY 2287411 in tumors and enabled the development of a mechanistic pharmacokinetic/pharmacodynamic model to describe the preclinical data. CONCLUSIONS: These promising preclinical results supported the transition of BAY 2287411 into a clinical phase I program in mesothelioma and ovarian cancer patients (NCT03507452).


Assuntos
Partículas alfa/uso terapêutico , Avaliação Pré-Clínica de Medicamentos/métodos , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/farmacologia , Neoplasias/tratamento farmacológico , Compostos Radiofarmacêuticos/farmacologia , Tório/farmacologia , Animais , Anticorpos Monoclonais/administração & dosagem , Anticorpos Monoclonais/química , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Neoplasias da Mama/patologia , Linhagem Celular Tumoral , Sobrevivência Celular , Feminino , Proteínas Ligadas por GPI/imunologia , Proteínas Ligadas por GPI/farmacocinética , Humanos , Imunoconjugados/administração & dosagem , Imunoconjugados/química , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Neoplasias Pulmonares/patologia , Mesotelina , Mesotelioma/tratamento farmacológico , Mesotelioma/metabolismo , Mesotelioma/patologia , Mesotelioma Maligno , Camundongos , Camundongos Nus , Neoplasias/metabolismo , Neoplasias/patologia , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Pancreáticas/tratamento farmacológico , Neoplasias Pancreáticas/metabolismo , Neoplasias Pancreáticas/patologia , Compostos Radiofarmacêuticos/farmacocinética , Tório/administração & dosagem , Tório/química , Tório/farmacocinética , Distribuição Tecidual , Ensaios Antitumorais Modelo de Xenoenxerto
5.
Cell Rep ; 27(3): 820-834.e9, 2019 04 16.
Artigo em Inglês | MEDLINE | ID: mdl-30995479

RESUMO

Inhibition of oxidative phosphorylation (OXPHOS) by 1-cyclopropyl-4-(4-[(5-methyl-3-(3-[4-(trifluoromethoxy)phenyl]-1,2,4-oxadiazol-5-yl)-1H-pyrazol-1-yl)methyl]pyridin-2-yl)piperazine (BAY87-2243, abbreviated as B87), a complex I inhibitor, fails to kill human cancer cells in vitro. Driven by this consideration, we attempted to identify agents that engage in synthetically lethal interactions with B87. Here, we report that dimethyl α-ketoglutarate (DMKG), a cell-permeable precursor of α-ketoglutarate that lacks toxicity on its own, kills cancer cells when combined with B87 or other inhibitors of OXPHOS. DMKG improved the antineoplastic effect of B87, both in vitro and in vivo. This combination caused MDM2-dependent, tumor suppressor protein p53 (TP53)-independent transcriptional reprogramming and alternative exon usage affecting multiple glycolytic enzymes, completely blocking glycolysis. Simultaneous inhibition of OXPHOS and glycolysis provoked a bioenergetic catastrophe culminating in the activation of a cell death program that involved disruption of the mitochondrial network and activation of PARP1, AIFM1, and APEX1. These results unveil a metabolic liability of human cancer cells that may be harnessed for the development of therapeutic regimens.


Assuntos
Apoptose/efeitos dos fármacos , Complexo I de Transporte de Elétrons/antagonistas & inibidores , Ácidos Cetoglutáricos/farmacologia , Animais , Fator de Indução de Apoptose/metabolismo , Linhagem Celular Tumoral , Complexo I de Transporte de Elétrons/metabolismo , Feminino , Glicólise/efeitos dos fármacos , Humanos , Isocitrato Desidrogenase/antagonistas & inibidores , Isocitrato Desidrogenase/genética , Isocitrato Desidrogenase/metabolismo , Camundongos , Camundongos Nus , Mitocôndrias/metabolismo , Oxidiazóis/farmacologia , Fosforilação Oxidativa/efeitos dos fármacos , Poli(ADP-Ribose) Polimerase-1/metabolismo , Proteínas Proto-Oncogênicas c-mdm2/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-mdm2/metabolismo , Pirazóis/farmacologia , Interferência de RNA , RNA Interferente Pequeno/metabolismo , Proteína Supressora de Tumor p53/metabolismo
6.
J Nucl Med ; 60(9): 1293-1300, 2019 09.
Artigo em Inglês | MEDLINE | ID: mdl-30850485

RESUMO

Targeted 227Th conjugates (TTCs) represent a new class of therapeutic radiopharmaceuticals for targeted α-therapy. They comprise the α-emitter 227Th complexed to a 3,2-hydroxypyridinone chelator conjugated to a tumor-targeting monoclonal antibody. The high energy and short range of the α-particles induce antitumor activity, driven by the induction of complex DNA double-strand breaks. We hypothesized that blocking the DNA damage response (DDR) pathway should further sensitize cancer cells by inhibiting DNA repair, thereby increasing the response to TTCs. Methods: This article reports the evaluation of the mesothelin (MSLN)-TTC conjugate (BAY 2287411) in combination with several DDR inhibitors, each of them blocking different DDR pathway enzymes. MSLN is a validated cancer target known to be overexpressed in mesothelioma, ovarian, lung, breast, and pancreatic cancer, with low expression in normal tissue. In vitro cytotoxicity experiments were performed on cancer cell lines by combining the MSLN-TTC with inhibitors of ataxia telangiectasia mutated, ataxia telangiectasia and Rad3-related (ATR), DNA-dependent protein kinase, and poly[adenosine diphosphate ribose] polymerase (PARP) 1/2. Further, we evaluated the antitumor efficacy of the MSLN-TTC in combination with DDR inhibitors in human ovarian cancer xenograft models. Results: Synergistic activity was observed in vitro for all tested inhibitors (inhibitors are denoted herein by the suffix "i") when combined with MSLN-TTC. ATRi and PARPi appeared to induce the strongest increase in potency. Further, in vivo antitumor efficacy of the MSLN-TTC in combination with ATRi or PARPi was investigated in the OVCAR-3 and OVCAR-8 xenograft models in nude mice, demonstrating synergistic antitumor activity for the ATRi combination at doses demonstrated to be nonefficacious when administered as monotherapy. Conclusion: The presented data support the mechanism-based rationale for combining the MSLN-TTC with DDR inhibitors as new treatment strategies in MSLN-positive ovarian cancer.


Assuntos
Dano ao DNA/efeitos dos fármacos , Proteínas Ligadas por GPI/farmacologia , Neoplasias Ovarianas/diagnóstico por imagem , Compostos Radiofarmacêuticos/farmacologia , Tório/farmacologia , Partículas alfa , Animais , Antineoplásicos , Apoptose , Linhagem Celular Tumoral , Quelantes/farmacologia , Reparo do DNA , Feminino , Xenoenxertos , Humanos , Mesotelina , Camundongos , Camundongos Nus , Transplante de Neoplasias , Piridonas/farmacologia , Distribuição Tecidual
7.
Int J Oncol ; 54(3): 1123-1133, 2019 03.
Artigo em Inglês | MEDLINE | ID: mdl-30747223

RESUMO

Mutations affecting the Wnt/ß­catenin pathway have been identified in 26­40% of hepatocellular carcinoma (HCC) cases. Aberrant activation of this pathway leads to uncontrolled cell proliferation and survival. Thus, identifying Wnt/ß­catenin pathway inhibitors may benefit a subset of patients with HCC. In the present study, the effects of sorafenib and a MEK inhibitor on tumor growth and Wnt/ß­catenin signaling in HCC models were evaluated. A ß­catenin mutant and ß­catenin wild­type HCC models were treated once daily with i) 10 mg/kg sorafenib, ii) 15 mg/kg refametinib (or 25 mg/kg selumetinib), or iii) sorafenib/refametinib. Western blotting was employed to determine changes in biomarkers relevant to Wnt/ß­catenin signaling. Apoptosis, cell proliferation and ß­catenin localization were analyzed by immunohistochemistry. Sorafenib/refametinib markedly inhibited tumor growth and cell proliferation, and caused cell death in naïve and sorafenib­resistant HCC models. Despite similar total ß­catenin levels, significant reductions in phosphorylated (p)­RanBP3 Ser58, p­ß­catenin Tyr142, active ß­catenin and ß­catenin target genes were observed in sorafenib/refametinib­treated tumors. Greater levels of ß­catenin in sorafenib/refametinib­treated tumors were accumulated at the membrane, as compared with in the control. In vitro, sorafenib/refametinib inhibited the Wnt/ß­catenin pathway and suppressed Wnt­3A­induced p­low­density lipoprotein receptor­related protein 6 Ser1490, p­RanBP3 Ser58 and p­ß­catenin Tyr142 in HCC cells. Combination of sorafenib and refametinib inhibits the growth of naïve and sorafenib resistant HCC tumors in association with active suppression of ß­catenin signaling regardless of ß­catenin mutational status. Thus, the sorafenib/MEK inhibitor combination may represent an alternative treatment for patients with HCC whose tumors develop resistance to sorafenib therapy.


Assuntos
Protocolos de Quimioterapia Combinada Antineoplásica/farmacologia , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Via de Sinalização Wnt/efeitos dos fármacos , Animais , Benzimidazóis/administração & dosagem , Difenilamina/administração & dosagem , Difenilamina/análogos & derivados , Humanos , Masculino , Camundongos , Camundongos SCID , Quinases de Proteína Quinase Ativadas por Mitógeno/antagonistas & inibidores , Sorafenibe/administração & dosagem , Sulfonamidas/administração & dosagem , Ensaios Antitumorais Modelo de Xenoenxerto
8.
Int J Cancer ; 145(5): 1346-1357, 2019 09 01.
Artigo em Inglês | MEDLINE | ID: mdl-30807645

RESUMO

Aberrant activation in fibroblast growth factor signaling has been implicated in the development of various cancers, including squamous cell lung cancer, squamous cell head and neck carcinoma, colorectal and bladder cancer. Thus, fibroblast growth factor receptors (FGFRs) present promising targets for novel cancer therapeutics. Here, we evaluated the activity of a novel pan-FGFR inhibitor, rogaratinib, in biochemical, cellular and in vivo efficacy studies in a variety of preclinical cancer models. In vitro kinase activity assays demonstrate that rogaratinib potently and selectively inhibits the activity of FGFRs 1, 2, 3 and 4. In line with this, rogaratinib reduced proliferation in FGFR-addicted cancer cell lines of various cancer types including lung, breast, colon and bladder cancer. FGFR and ERK phosphorylation interruption by rogaratinib treatment in several FGFR-amplified cell lines suggests that the anti-proliferative effects are mediated by FGFR/ERK pathway inhibition. Furthermore, rogaratinib exhibited strong in vivo efficacy in several cell line- and patient-derived xenograft models characterized by FGFR overexpression. The observed efficacy of rogaratinib strongly correlated with FGFR mRNA expression levels. These promising results warrant further development of rogaratinib and clinical trials are currently ongoing (ClinicalTrials.gov Identifiers: NCT01976741, NCT03410693, NCT03473756).


Assuntos
Neoplasias da Mama/tratamento farmacológico , Neoplasias/tratamento farmacológico , Piperazinas/farmacologia , Pirróis/farmacologia , Receptores de Fatores de Crescimento de Fibroblastos/antagonistas & inibidores , Tiofenos/farmacologia , Animais , Antineoplásicos/farmacologia , Neoplasias da Mama/metabolismo , Linhagem Celular Tumoral , Neoplasias Colorretais/tratamento farmacológico , Neoplasias Colorretais/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Feminino , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/metabolismo , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Nus , Neoplasias/metabolismo , Fosforilação/efeitos dos fármacos , Distribuição Aleatória , Ratos , Ensaios Antitumorais Modelo de Xenoenxerto
9.
Clin Cancer Res ; 25(4): 1404-1414, 2019 02 15.
Artigo em Inglês | MEDLINE | ID: mdl-30429199

RESUMO

PURPOSE: The catalytic function of BUB1 is required for chromosome arm resolution and positioning of the chromosomal passenger complex for resolution of spindle attachment errors and plays only a minor role in spindle assembly checkpoint activation. Here, we present the identification and preclinical pharmacologic profile of the first BUB1 kinase inhibitor with good bioavailability. EXPERIMENTAL DESIGN: The Bayer compound library was screened for BUB1 kinase inhibitors and medicinal chemistry efforts to improve target affinity and physicochemical and pharmacokinetic parameters resulting in the identification of BAY 1816032 were performed. BAY 1816032 was characterized for kinase selectivity, inhibition of BUB1 signaling, and inhibition of tumor cell proliferation alone and in combination with taxanes, ATR, and PARP inhibitors. Effects on tumor growth in vivo were evaluated using human triple-negative breast xenograft models. RESULTS: The highly selective compound BAY 1816032 showed long target residence time and induced chromosome mis-segregation upon combination with low concentrations of paclitaxel. It was synergistic or additive in combination with paclitaxel or docetaxel, as well as with ATR or PARP inhibitors in cellular assays. Tumor xenograft studies demonstrated a strong and statistically significant reduction of tumor size and excellent tolerability upon combination of BAY 1816032 with paclitaxel or olaparib as compared with the respective monotherapies. CONCLUSIONS: Our findings suggest clinical proof-of-concept studies evaluating BAY 1816032 in combination with taxanes or PARP inhibitors to enhance their efficacy and potentially overcome resistance.


Assuntos
Resistencia a Medicamentos Antineoplásicos/genética , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/genética , Animais , Proteínas Mutadas de Ataxia Telangiectasia/antagonistas & inibidores , Proteínas Mutadas de Ataxia Telangiectasia/genética , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Células HeLa , Humanos , Camundongos , Neoplasias/genética , Neoplasias/patologia , Ftalazinas/farmacologia , Piperazinas/farmacologia , Inibidores de Poli(ADP-Ribose) Polimerases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Taxoides/farmacologia , Ensaios Antitumorais Modelo de Xenoenxerto
10.
Oncotarget ; 9(75): 34103-34121, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30344925

RESUMO

Despite the recent advances in the treatment of ovarian cancer, it remains an area of high unmet medical need. Epithelial ovarian cancer is associated with high levels of mesothelin expression, and therefore, mesothelin is an attractive candidate target for the treatment of this disease. Herein, we investigated the antitumor efficacy of the mesothelin-targeting antibody-drug conjugate (ADC) anetumab ravtansine as a novel treatment option for ovarian cancer in monotherapy and in combination with the antitumor agents pegylated liposomal doxorubicin (PLD), carboplatin, copanlisib and bevacizumab. Anetumab ravtansine showed potent antitumor activity as a monotherapy in ovarian cancer models with high mesothelin expression. No activity was seen in mesothelin-negative models. The combination of anetumab ravtansine with PLD showed additive anti-proliferative activity in vitro, which translated into improved therapeutic in vivo efficacy in ovarian cancer cell line- and patient-derived xenograft (PDX) models compared to either agents as a monotherapy. The combination of anetumab ravtansine with the PI3Kα/δ inhibitor copanlisib was additive in the OVCAR-3 and OVCAR-8 cell lines in vitro, showing increased apoptosis in response to the combination treatment. In vivo, the combination of anetumab ravtansine with copanlisib resulted in more potent antitumor activity than either of the treatments alone. Likewise, the combination of anetumab ravtansine with carboplatin or bevacizumab showed improved in vivo efficacy in the ST081 and OVCAR-3 models, respectively. All combinations were well-tolerated. Taken together, these data support the development of anetumab ravtansine for ovarian cancer treatment and highlight its suitability for combination therapy with PLD, carboplatin, copanlisib, or bevacizumab.

11.
Gastric Cancer ; 21(3): 401-412, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28852882

RESUMO

BACKGROUND: Fibroblast growth factor receptor (FGFR2) has been proposed as a target in gastric cancer. However, appropriate methods to select patients for anti-FGFR2 therapies have not yet been established. METHODS: We used in situ techniques to investigate FGFR2 mRNA expression and gene amplification in a large cohort of 1036 Japanese gastric cancer patients. FGFR2 mRNA expression was determined by RNAscope. FGFR2 gene amplification was determined by dual-color in situ hybridization (DISH). RESULTS: We successfully analyzed 578 and 718 samples by DISH and RNAscope, respectively; 2% (12/578) showed strong FGFR2 gene amplification (FGFR2:CEN10 >10); moderate FGFR2 gene amplification (FGFR2:CEN10 <10; ≥2) was detected in 8% (47/578); and high FGFR2 mRNA expression of score 4 (>10 dots/cell and >10% of positive cells with dot clusters under a 20× objective) was seen in 4% (29/718). For 468 samples, both mRNA and DISH data were available. FGFR2 mRNA expression levels were associated with gene amplification; FGFR2 mRNA levels were highest in the highly amplified samples (n = 12). All highly amplified samples showed very strong FGFR2 mRNA expression (dense clusters of the signal visible under a 1× objective). Patients with very strong FGFR2 mRNA expression showed more homogeneous FGFR2 mRNA expression compared to patients with lower FGFGR2 mRNA expression. Gastric cancer patients with tumors that had an FGFR2 mRNA expression score of 4 had shorter RFS compared with score 0-3 patients. CONCLUSION: RNAscope and DISH are suitable methods to evaluate FGFR2 status in gastric cancer. Formalin-fixed paraffin-embedded (FFPE) tissue slides allowed evaluation of the intratumor heterogeneity of these FGFR2 biomarkers.


Assuntos
Adenocarcinoma/genética , Hibridização In Situ/métodos , Técnicas de Amplificação de Ácido Nucleico/métodos , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/genética , Neoplasias Gástricas/genética , Estudos de Coortes , Dosagem de Genes , Humanos , RNA Mensageiro/análise
12.
ChemMedChem ; 12(21): 1776-1793, 2017 11 08.
Artigo em Inglês | MEDLINE | ID: mdl-28961375

RESUMO

Selective inhibition of exclusively transcription-regulating PTEFb/CDK9 is a promising new approach in cancer therapy. Starting from lead compound BAY-958, lead optimization efforts strictly focusing on kinase selectivity, physicochemical and DMPK properties finally led to the identification of the orally available clinical candidate atuveciclib (BAY 1143572). Structurally characterized by an unusual benzyl sulfoximine group, BAY 1143572 exhibited the best overall profile in vitro and in vivo, including high efficacy and good tolerability in xenograft models in mice and rats. BAY 1143572 is the first potent and highly selective PTEFb/CDK9 inhibitor to enter clinical trials for the treatment of cancer.


Assuntos
Quinase 9 Dependente de Ciclina/antagonistas & inibidores , Neoplasias/tratamento farmacológico , Inibidores de Proteínas Quinases/uso terapêutico , Sulfonamidas/uso terapêutico , Triazinas/uso terapêutico , Animais , Sítios de Ligação , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Cristalografia por Raios X , Quinase 9 Dependente de Ciclina/metabolismo , Meia-Vida , Células HeLa , Humanos , Leucemia Mieloide Aguda/tratamento farmacológico , Camundongos , Camundongos Nus , Conformação Molecular , Simulação de Acoplamento Molecular , Neoplasias/patologia , Inibidores de Proteínas Quinases/química , Inibidores de Proteínas Quinases/toxicidade , Estrutura Terciária de Proteína , Ratos , Ratos Nus , Relação Estrutura-Atividade , Sulfonamidas/química , Sulfonamidas/toxicidade , Transplante Heterólogo , Triazinas/química , Triazinas/toxicidade
13.
Clin Cancer Res ; 23(15): 4335-4346, 2017 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-28364014

RESUMO

Purpose: Radium-223 dichloride (radium-223, Xofigo), a targeted alpha therapy, is currently used for the treatment of patients with castration-resistant prostate cancer (CRPC) with bone metastases. This study examines the mode-of-action and antitumor efficacy of radium-223 in two prostate cancer xenograft models.Experimental Design: Mice bearing intratibial LNCaP or LuCaP 58 tumors were randomized into groups (n = 12-17) based on lesion grade and/or serum PSA level and administered radium-223 (300 kBq/kg) or vehicle, twice at 4-week intervals. X-rays and serum samples were obtained biweekly. Soft tissue tumors were observed macroscopically at sacrifice. Tibiae were analyzed by gamma counter, micro-CT, autoradiography and histology.Results: Radium-223 inhibited tumor-induced osteoblastic bone growth and protected normal bone architecture, leading to reduced bone volume in LNCaP and abiraterone-resistant LuCaP 58 models. Furthermore, radium-223 resulted in lower PSA values and reduced total tissue and tumor areas, indicating that treatment constrains prostate cancer growth in bone. In addition, radium-223 suppressed abnormal bone metabolic activity as evidenced by decreased number of osteoblasts and osteoclasts and reduced level of the bone formation marker PINP. Mode-of-action studies revealed that radium-223 was deposited in the intratumoral bone matrix. DNA double-strand breaks were induced in cancer cells within 24 hours after radium-223 treatment, and PSA levels were significantly lower 72 hours after treatment, providing further evidence of the antitumor effects.Conclusions: Taken together, radium-223 therapy exhibits a dual targeting mode-of-action that induces tumor cell death and suppresses tumor-induced pathologic bone formation in tumor microenvironment of osseous CRPC growth in mice. Clin Cancer Res; 23(15); 4335-46. ©2017 AACR.


Assuntos
Antineoplásicos/administração & dosagem , Neoplasias Ósseas/radioterapia , Neoplasias de Próstata Resistentes à Castração/radioterapia , Rádio (Elemento)/administração & dosagem , Animais , Neoplasias Ósseas/patologia , Neoplasias Ósseas/secundário , Osso e Ossos/patologia , Osso e Ossos/efeitos da radiação , Linhagem Celular Tumoral , Proliferação de Células/efeitos da radiação , Modelos Animais de Doenças , Humanos , Masculino , Camundongos , Osteoclastos/efeitos da radiação , Neoplasias de Próstata Resistentes à Castração/patologia , Radioisótopos/administração & dosagem , Microambiente Tumoral/efeitos da radiação
14.
Mol Cancer Ther ; 16(5): 893-904, 2017 05.
Artigo em Inglês | MEDLINE | ID: mdl-28292941

RESUMO

C4.4A (LYPD3) has been identified as a cancer- and metastasis-associated internalizing cell surface protein that is expressed in non-small cell lung cancer (NSCLC), with particularly high prevalence in the squamous cell carcinoma (SCC) subtype. With the exception of skin keratinocytes and esophageal endothelial cells, C4.4A expression is scarce in normal tissues, presenting an opportunity to selectively treat cancers with a C4.4A-directed antibody-drug conjugate (ADC). We have generated BAY 1129980 (C4.4A-ADC), an ADC consisting of a fully human C4.4A-targeting mAb conjugated to a novel, highly potent derivative of the microtubule-disrupting cytotoxic drug auristatin via a noncleavable alkyl hydrazide linker. In vitro, C4.4A-ADC demonstrated potent antiproliferative efficacy in cell lines endogenously expressing C4.4A and inhibited proliferation of C4.4A-transfected A549 lung cancer cells showing selectivity compared with a nontargeted control ADC. In vivo, C4.4A-ADC was efficacious in human NSCLC cell line (NCI-H292 and NCI-H322) and patient-derived xenograft (PDX) models (Lu7064, Lu7126, Lu7433, and Lu7466). C4.4A expression level correlated with in vivo efficacy, the most responsive being the models with C4.4A expression in over 50% of the cells. In the NCI-H292 NSCLC model, C4.4A-ADC demonstrated equal or superior efficacy compared to cisplatin, paclitaxel, and vinorelbine. Furthermore, an additive antitumor efficacy in combination with cisplatin was observed. Finally, a repeated dosing with C4.4A-ADC was well tolerated without changing the sensitivity to the treatment. Taken together, C4.4A-ADC is a promising therapeutic candidate for the treatment of NSCLC and other cancers expressing C4.4A. A phase I study (NCT02134197) with the C4.4A-ADC BAY 1129980 is currently ongoing. Mol Cancer Ther; 16(5); 893-904. ©2017 AACR.


Assuntos
Anticorpos Monoclonais/administração & dosagem , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Moléculas de Adesão Celular/imunologia , Imunoconjugados/administração & dosagem , Aminobenzoatos/química , Aminobenzoatos/imunologia , Animais , Anticorpos Monoclonais/imunologia , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/imunologia , Moléculas de Adesão Celular/antagonistas & inibidores , Linhagem Celular Tumoral , Cisplatino/administração & dosagem , Cisplatino/imunologia , Proteínas Ligadas por GPI/antagonistas & inibidores , Proteínas Ligadas por GPI/imunologia , Humanos , Imunoconjugados/química , Imunoconjugados/imunologia , Camundongos , Oligopeptídeos/química , Oligopeptídeos/imunologia , Paclitaxel/administração & dosagem , Paclitaxel/imunologia , Vimblastina/administração & dosagem , Vimblastina/análogos & derivados , Vimblastina/imunologia , Vinorelbina , Ensaios Antitumorais Modelo de Xenoenxerto
15.
Cancer Cell ; 31(1): 64-78, 2017 01 09.
Artigo em Inglês | MEDLINE | ID: mdl-28073005

RESUMO

Compared with follicular lymphoma, high PI3Kα expression was more prevalent in diffuse large B cell lymphoma (DLBCL), although both tumor types expressed substantial PI3Kδ. Simultaneous inhibition of PI3Kα and PI3Kδ dramatically enhanced the anti-tumor profile in ABC-DLBCL models compared with selective inhibition of PI3Kδ, PI3Kα, or BTK. The anti-tumor activity was associated with suppression of p-AKT and a mechanism of blocking nuclear factor-κB activation driven by CD79mut, CARD11mut, TNFAIP3mut, or MYD88mut. Inhibition of PI3Kα/δ resulted in tumor regression in an ibrutinib-resistant CD79BWT/MYD88mut patient-derived ABC-DLBCL model. Furthermore, rebound activation of BTK and AKT was identified as a mechanism limiting CD79Bmut-ABC-DLBCL to show a robust response to PI3K and BTK inhibitor monotherapies. A combination of ibrutinib with the PI3Kα/δ inhibitor copanlisib produced a sustained complete response in vivo in CD79Bmut/MYD88mut ABC-DLBCL models.


Assuntos
Classe I de Fosfatidilinositol 3-Quinases/antagonistas & inibidores , Linfoma Difuso de Grandes Células B/tratamento farmacológico , NF-kappa B/fisiologia , Inibidores de Fosfoinositídeo-3 Quinase , Proteínas Proto-Oncogênicas c-akt/fisiologia , Receptores de Antígenos de Linfócitos B/fisiologia , Adenina/análogos & derivados , Adulto , Tirosina Quinase da Agamaglobulinemia , Idoso , Animais , Linhagem Celular Tumoral , MAP Quinases Reguladas por Sinal Extracelular/metabolismo , Humanos , Linfoma Difuso de Grandes Células B/mortalidade , Linfoma Difuso de Grandes Células B/patologia , Camundongos , Camundongos Endogâmicos BALB C , Pessoa de Meia-Idade , Piperidinas , Proteínas Tirosina Quinases/antagonistas & inibidores , Pirazóis/farmacologia , Pirimidinas/farmacologia , Quinazolinas/farmacologia
16.
Int J Cancer ; 140(2): 449-459, 2017 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-27699769

RESUMO

The PI3K-AKT-mTOR signaling cascade is activated in the majority of human cancers, and its activation also plays a key role in resistance to chemo and targeted therapeutics. In particular, in both breast and prostate cancer, increased AKT pathway activity is associated with cancer progression, treatment resistance and poor disease outcome. Here, we evaluated the activity of a novel allosteric AKT1/2 inhibitor, BAY 1125976, in biochemical, cellular mechanistic, functional and in vivo efficacy studies in a variety of tumor models. In in vitro kinase activity assays, BAY 1125976 potently and selectively inhibited the activity of full-length AKT1 and AKT2 by binding into an allosteric binding pocket formed by kinase and PH domain. In accordance with this proposed allosteric binding mode, BAY 1125976 bound to inactive AKT1 and inhibited T308 phosphorylation by PDK1, while the activity of truncated AKT proteins lacking the pleckstrin homology domain was not inhibited. In vitro, BAY 1125976 inhibited cell proliferation in a broad panel of human cancer cell lines. Particularly high activity was observed in breast and prostate cancer cell lines expressing estrogen or androgen receptors. Furthermore, BAY 1125976 exhibited strong in vivo efficacy in both cell line and patient-derived xenograft models such as the KPL4 breast cancer model (PIK3CAH1074R mutant), the MCF7 and HBCx-2 breast cancer models and the AKTE17K mutant driven prostate cancer (LAPC-4) and anal cancer (AXF 984) models. These findings indicate that BAY 1125976 is a potent and highly selective allosteric AKT1/2 inhibitor that targets tumors displaying PI3K/AKT/mTOR pathway activation, providing opportunities for the clinical development of new, effective treatments.


Assuntos
Nitrilas/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Transdução de Sinais/efeitos dos fármacos , Sulfonas/farmacologia , Animais , Células CACO-2 , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Feminino , Células HeLa , Humanos , Células MCF-7 , Masculino , Camundongos , Camundongos Nus , Camundongos SCID , Fosfatidilinositol 3-Quinases/metabolismo , Fosforilação/efeitos dos fármacos , Serina-Treonina Quinases TOR/metabolismo , Ensaios Antitumorais Modelo de Xenoenxerto/métodos
17.
Cancer Res ; 76(21): 6331-6339, 2016 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-27543601

RESUMO

The fibroblast growth factor receptor FGFR2 is overexpressed in a variety of solid tumors, including breast, gastric, and ovarian tumors, where it offers a potential therapeutic target. In this study, we present evidence of the preclinical efficacy of BAY 1187982, a novel antibody-drug conjugate (ADC). It consists of a fully human FGFR2 monoclonal antibody (mAb BAY 1179470), which binds to the FGFR2 isoforms FGFR2-IIIb and FGFR2-IIIc, conjugated through a noncleavable linker to a novel derivative of the microtubule-disrupting cytotoxic drug auristatin (FGFR2-ADC). In FGFR2-expressing cancer cell lines, this FGFR2-ADC exhibited potency in the low nanomolar to subnanomolar range and was more than 100-fold selective against FGFR2-negative cell lines. High expression levels of FGFR2 in cells correlated with efficient internalization, efficacy, and cytotoxic effects in vitro Pharmacokinetic analyses in mice bearing FGFR2-positive NCI-H716 tumors indicated that the toxophore metabolite of FGFR2-ADC was enriched more than 30-fold in tumors compared with healthy tissues. Efficacy studies demonstrated that FGFR2-ADC treatment leads to a significant tumor growth inhibition or tumor regression of cell line-based or patient-derived xenograft models of human gastric or breast cancer. Furthermore, FGFR2 amplification or mRNA overexpression predicted high efficacy in both of these types of in vivo model systems. Taken together, our results strongly support the clinical evaluation of BAY 1187982 in cancer patients and a phase I study (NCT02368951) has been initiated. Cancer Res; 76(21); 6331-9. ©2016 AACR.


Assuntos
Aminobenzoatos/uso terapêutico , Anticorpos Monoclonais/uso terapêutico , Imunoconjugados/uso terapêutico , Neoplasias/tratamento farmacológico , Oligopeptídeos/uso terapêutico , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/análise , Animais , Anticorpos Monoclonais Humanizados , Linhagem Celular Tumoral , Feminino , Humanos , Camundongos , Camundongos Endogâmicos BALB C , Receptor Tipo 2 de Fator de Crescimento de Fibroblastos/imunologia , Ensaios Antitumorais Modelo de Xenoenxerto
18.
Mol Cancer Ther ; 15(4): 583-92, 2016 04.
Artigo em Inglês | MEDLINE | ID: mdl-26832791

RESUMO

Monopolar spindle 1 (Mps1) has been shown to function as the key kinase that activates the spindle assembly checkpoint (SAC) to secure proper distribution of chromosomes to daughter cells. Here, we report the structure and functional characterization of two novel selective Mps1 inhibitors, BAY 1161909 and BAY 1217389, derived from structurally distinct chemical classes. BAY 1161909 and BAY 1217389 inhibited Mps1 kinase activity with IC50 values below 10 nmol/L while showing an excellent selectivity profile. In cellular mechanistic assays, both Mps1 inhibitors abrogated nocodazole-induced SAC activity and induced premature exit from mitosis ("mitotic breakthrough"), resulting in multinuclearity and tumor cell death. Both compounds efficiently inhibited tumor cell proliferation in vitro (IC50 nmol/L range). In vivo, BAY 1161909 and BAY 1217389 achieved moderate efficacy in monotherapy in tumor xenograft studies. However, in line with its unique mode of action, when combined with paclitaxel, low doses of Mps1 inhibitor reduced paclitaxel-induced mitotic arrest by the weakening of SAC activity. As a result, combination therapy strongly improved efficacy over paclitaxel or Mps1 inhibitor monotreatment at the respective MTDs in a broad range of xenograft models, including those showing acquired or intrinsic paclitaxel resistance. Both Mps1 inhibitors showed good tolerability without adding toxicity to paclitaxel monotherapy. These preclinical findings validate the innovative concept of SAC abrogation for cancer therapy and justify clinical proof-of-concept studies evaluating the Mps1 inhibitors BAY 1161909 and BAY 1217389 in combination with antimitotic cancer drugs to enhance their efficacy and potentially overcome resistance. Mol Cancer Ther; 15(4); 583-92. ©2016 AACR.


Assuntos
Antineoplásicos/farmacologia , Proteínas de Ciclo Celular/antagonistas & inibidores , Inibidores de Proteínas Quinases/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Antineoplásicos/química , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Modelos Animais de Doenças , Descoberta de Drogas , Avaliação Pré-Clínica de Medicamentos , Ativação Enzimática/efeitos dos fármacos , Feminino , Humanos , Masculino , Camundongos , Mitose/efeitos dos fármacos , Inibidores de Proteínas Quinases/química , Ratos , Carga Tumoral/efeitos dos fármacos , Ensaios Antitumorais Modelo de Xenoenxerto
19.
J Am Soc Nephrol ; 27(7): 1917-24, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-26574045

RESUMO

The NFκB transcription factor family facilitates the activation of dendritic cells (DCs) and CD4(+) T helper (Th) cells, which are important for protective adaptive immunity. Inappropriate activation of these immune cells may cause inflammatory disease, and NFκB inhibitors are promising anti-inflammatory drug candidates. Here, we investigated whether inhibiting the NFκB-inducing kinase IKK2 can attenuate crescentic GN, a severe DC- and Th cell-dependent kidney inflammatory disease. Prophylactic pharmacologic IKK2 inhibition reduced DC and Th cell activation and ameliorated nephrotoxic serum-induced GN in mice. However, therapeutic IKK2 inhibition during ongoing disease aggravated the nephritogenic immune response and disease symptoms. This effect resulted from the renal loss of regulatory T cells, which have been shown to protect against crescentic GN and which require IKK2. In conclusion, although IKK2 inhibition can suppress the induction of nephritogenic immune responses in vivo, it may aggravate such responses in clinically relevant situations, because it also impairs regulatory T cells and thereby, unleashes preexisting nephritogenic responses. Our findings argue against using IKK2 inhibitors in chronic GN and perhaps, other immune-mediated diseases.


Assuntos
Glomerulonefrite/induzido quimicamente , Glomerulonefrite/prevenção & controle , Oxazinas/farmacologia , Proteínas Serina-Treonina Quinases/antagonistas & inibidores , Piridinas/farmacologia , Animais , Progressão da Doença , Masculino , Camundongos , Oxazinas/uso terapêutico , Piridinas/uso terapêutico , Índice de Gravidade de Doença , Quinase Induzida por NF-kappaB
20.
Cancer Med ; 4(2): 253-67, 2015 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25490861

RESUMO

Molecular mechanisms underlying the development of resistance to platinum-based treatment in patients with ovarian cancer remain poorly understood. This is mainly due to the lack of appropriate in vivo models allowing the identification of resistance-related factors. In this study, we used human whole-genome microarrays and linear model analysis to identify potential resistance-related genes by comparing the expression profiles of the parental human ovarian cancer model A2780 and its platinum-resistant variant A2780cis before and after carboplatin treatment in vivo. Growth differentiation factor 15 (GDF15) was identified as one of five potential resistance-related genes in the A2780cis tumor model. Although A2780-bearing mice showed a strong carboplatin-induced increase of GDF15 plasma levels, the basal higher GDF15 plasma levels of A2780cis-bearing mice showed no further increase after short-term or long-term carboplatin treatment. This correlated with a decreased DNA damage response, enhanced AKT survival signaling and abrogated cell cycle arrest in the carboplatin-treated A2780cis tumors. Furthermore, knockdown of GDF15 in A2780cis cells did not alter cell proliferation but enhanced cell migration and colony size in vitro. Interestingly, in vivo knockdown of GDF15 in the A2780cis model led to a basal-enhanced tumor growth, but increased sensitivity to carboplatin treatment as compared to the control-transduced A2780cis tumors. This was associated with larger necrotic areas, a lobular tumor structure and increased p53 and p16 expression of the carboplatin-treated shGDF15-A2780cis tumors. Furthermore, shRNA-mediated GDF15 knockdown abrogated p27 expression as compared to control-transduced A2780cis tumors. In conclusion, these data show that GDF15 may contribute to carboplatin resistance by suppressing tumor growth through p27. These data show that GDF15 might serve as a novel treatment target in women with platinum-resistant ovarian cancer.


Assuntos
Antineoplásicos/administração & dosagem , Carboplatina/administração & dosagem , Inibidor de Quinase Dependente de Ciclina p27/genética , Resistencia a Medicamentos Antineoplásicos , Fator 15 de Diferenciação de Crescimento/genética , Neoplasias Ovarianas/tratamento farmacológico , Animais , Antineoplásicos/farmacologia , Carboplatina/farmacologia , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos/efeitos dos fármacos , Feminino , Perfilação da Expressão Gênica , Técnicas de Silenciamento de Genes , Humanos , Camundongos , Camundongos SCID , Análise de Sequência com Séries de Oligonucleotídeos , Neoplasias Ovarianas/genética , Ensaios Antitumorais Modelo de Xenoenxerto
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA