Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 49
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Opt Express ; 31(7): 11806-11819, 2023 Mar 27.
Artigo em Inglês | MEDLINE | ID: mdl-37155808

RESUMO

Any ultrafast optical spectroscopy experiment is usually accompanied by the necessary routine of ultrashort-pulse characterization. The majority of pulse characterization approaches solve either a one-dimensional (e.g., via interferometry) or a two-dimensional (e.g., via frequency-resolved measurements) problem. Solution of the two-dimensional pulse-retrieval problem is generally more consistent due to the problem's over-determined nature. In contrast, the one-dimensional pulse-retrieval problem, unless constraints are added, is impossible to solve unambiguously as ultimately imposed by the fundamental theorem of algebra. In cases where additional constraints are involved, the one-dimensional problem may be possible to solve, however, existing iterative algorithms lack generality, and often stagnate for complicated pulse shapes. Here we use a deep neural network to unambiguously solve a constrained one-dimensional pulse-retrieval problem and show the potential of fast, reliable and complete pulse characterization using interferometric correlation time traces determined by the pulses with partial spectral overlap.

2.
J Phys Chem Lett ; 14(17): 4078-4083, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37120843

RESUMO

Due to desirable optical properties, such as efficient luminescence and large Stokes shift, DNA-templated silver nanoclusters (DNA-AgNCs) have received significant attention over the past decade. Nevertheless, the excited-state dynamics of these systems are poorly understood, as studies of the processes ultimately leading to a fluorescent state are scarce. Here we investigate the early time relaxation dynamics of a 16-atom silver cluster (DNA-Ag16NC) featuring NIR emission in combination with an unusually large Stokes shift of over 5000 cm-1. We follow the photoinduced dynamics of DNA-Ag16NC on time ranges from tens of femtoseconds to nanoseconds using a combination of ultrafast optical spectroscopies, and extract a kinetic model to clarify the physical picture of the photoinduced dynamics. We expect the obtained model to contribute to guiding research efforts toward elucidating the electronic structure and dynamics of these novel objects and their potential applications in fluorescence-based labeling, imaging, and sensing.


Assuntos
Nanopartículas Metálicas , Prata , Prata/química , Nanopartículas Metálicas/química , Espectrometria de Fluorescência/métodos , DNA/química , Luminescência
3.
J Chem Phys ; 158(10): 104104, 2023 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-36922135

RESUMO

In polaritons, the properties of matter are modified by mixing the molecular transitions with light modes inside a cavity. Resultant hybrid light-matter states exhibit energy level shifts, are delocalized over many molecular units, and have a different excited-state potential energy landscape, which leads to modified exciton dynamics. Previously, non-Hermitian Hamiltonians have been derived to describe the excited states of molecules coupled to surface plasmons (i.e., plexcitons), and these operators have been successfully used in the description of linear and third order optical response. In this article, we rigorously derive non-Hermitian Hamiltonians in the response function formalism of nonlinear spectroscopy by means of Feshbach operators and apply them to explore spectroscopic signatures of plexcitons. In particular, we analyze the optical response below and above the exceptional point that arises for matching transition energies for plasmon and molecular components and study their decomposition using double-sided Feynman diagrams. We find a clear distinction between interference and Rabi splitting in linear spectroscopy and a qualitative change in the symmetry of the line shape of the nonlinear signal when crossing the exceptional point. This change corresponds to one in the symmetry of the eigenvalues of the Hamiltonian. Our work presents an approach for simulating the optical response of sublevels within an electronic system and opens new applications of nonlinear spectroscopy to examine the different regimes of the spectrum of non-Hermitian Hamiltonians.

4.
Opt Express ; 30(13): 22817-22818, 2022 Jun 20.
Artigo em Inglês | MEDLINE | ID: mdl-36224971

RESUMO

We present an erratum regarding the calculated phase matching bandwidths for achromatic second harmonic generation presented in our paper [Opt. Express29, 25593 (2021)10.1364/OE.425053].

5.
J Chem Phys ; 157(1): 014201, 2022 Jul 07.
Artigo em Inglês | MEDLINE | ID: mdl-35803814

RESUMO

Advances in ultrafast spectroscopy can provide access to dynamics involving nontrivial quantum correlations and their evolutions. In coherent 2D spectroscopy, the oscillatory time dependence of a signal is a signature of such quantum dynamics. Here, we study such beating signals in electronic coherent 2D spectroscopy of CdSe quantum dots (CdSe QDs) at 77 K. The beating signals are analyzed in terms of their positive and negative Fourier components. We conclude that the beatings originate from coherent LO-phonons of CdSe QDs. No evidence for the QD size dependence of the LO-phonon frequency was identified.


Assuntos
Compostos de Cádmio , Pontos Quânticos , Compostos de Selênio , Compostos de Cádmio/química , Pontos Quânticos/química , Compostos de Selênio/química , Análise Espectral , Temperatura
6.
J Phys Chem Lett ; 13(5): 1266-1271, 2022 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-35089715

RESUMO

Quantum dots (QDs) form a promising family of nanomaterials for various applications in optoelectronics. Understanding the details of the excited-state dynamics in QDs is vital for optimizing their function. We apply two-color 2D electronic spectroscopy to investigate CdSe QDs at 77 K within a broad spectral range. Analysis of the electronic dynamics during the population time allows us to identify the details of the excitation pathways. The initially excited high-energy electrons relax with the time constant of 100 fs. Simultaneously, the states at the band edge rise within 700 fs. Remarkably, the excited-state absorption is rising with a very similar time constant of 700 fs. This makes us reconsider the earlier interpretation of the excited-state absorption as the signature of a long-lived trap state. Instead, we propose that this signal originates from the excitation of the electrons that have arrived in the conduction-band edge.

7.
Opt Express ; 29(16): 25593-25604, 2021 Aug 02.
Artigo em Inglês | MEDLINE | ID: mdl-34614887

RESUMO

The generation and characterization of ultrashort laser pulses in the deep ultraviolet spectral region is challenging, especially at high pulse repetition rates and low pulse energies. Here, we combine achromatic second harmonic generation and adaptive pulse compression for the efficient generation of sub-10 fs deep ultraviolet laser pulses at a laser repetition rate of 200 kHz. Furthermore, we simplify the pulse compression scheme and reach pulse durations of ≈10 fs without the use of adaptive optics. We demonstrate straight-forward tuning from 250 to 320 nm, broad pulse spectra of up to 63 nm width, excellent stability and a high robustness against misalignment. These features make the approach appealing for numerous spectroscopy and imaging applications.

8.
J Chem Phys ; 154(11): 115102, 2021 Mar 21.
Artigo em Inglês | MEDLINE | ID: mdl-33752351

RESUMO

Optical nonlinear spectroscopies carry a high amount of information about the systems under investigation; however, as they report polarization signals, the resulting spectra are often congested and difficult to interpret. To recover the landscape of energy states and physical processes such as energy and electron transfer, a clear interpretation of the nonlinear signals is prerequisite. Here, we focus on the interpretation of the electrochromic band-shift signal, which is generated when an internal electric field is established in the system following optical excitation. Whereas the derivative shape of the band-shift signal is well understood in transient absorption spectroscopy, its emergence in two-dimensional electronic spectroscopy (2DES) has not been discussed. In this work, we employed 2DES to follow the dynamic band-shift signal in reaction centers of purple bacteria Rhodobacter sphaeroides at 77 K. The prominent two-dimensional derivative-shape signal appears with the characteristic formation time of the charge separated state. To explain and characterize the band-shift signal, we use expanded double-sided Feynman diagram formalism. We propose to distinguish two types of Feynman diagrams that lead to signals with negative amplitude: excited state absorption and re-excitation. The presented signal decomposition and modeling analysis allows us to recover precise electrochromic shifts of accessory bacteriochlorophylls, identify additional signals in the B band range, and gain a further insight into the electron transfer mechanism. In a broader perspective, expanded Feynman diagram formalism will allow for interpretation of all 2D signals in a clearer and more intuitive way and therefore facilitate studying the underlying photophysics.


Assuntos
Elétrons , Complexo de Proteínas do Centro de Reação Fotossintética/metabolismo , Rhodobacter sphaeroides/enzimologia , Análise Espectral , Complexo de Proteínas do Centro de Reação Fotossintética/química
9.
ACS Nano ; 15(1): 1133-1144, 2021 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-33439621

RESUMO

Hot electron relaxation and transport in nanostructures involve a multitude of ultrafast processes whose interplay and relative importance are still not fully understood, but which are relevant for future applications in areas such as photocatalysis and optoelectronics. To unravel these processes, their dynamics in both time and space must be studied with high spatiotemporal resolution in structurally well-defined nanoscale objects. We employ time-resolved photoemission electron microscopy to image the relaxation of photogenerated hot electrons within InAs nanowires on a femtosecond time scale. We observe transport of hot electrons to the nanowire surface within 100 fs caused by surface band bending. We find that electron-hole scattering substantially influences hot electron cooling during the first few picoseconds, while phonon scattering is prominent at longer time scales. The time scale of cooling is found to differ between the well-defined wurtzite and zincblende crystal segments of the nanowires depending on excitation light polarization. The scattering and transport mechanisms identified will play a role in the rational design of nanostructures for hot-electron-based applications.

10.
J Chem Phys ; 154(4): 045102, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33514092

RESUMO

Over the last several decades, the light-harvesting protein complexes of purple bacteria have been among the most popular model systems for energy transport in excitonic systems in the weak and intermediate intermolecular coupling regime. Despite this extensive body of scientific work, significant questions regarding the excitonic states and the photo-induced dynamics remain. Here, we address the low-temperature electronic structure and excitation dynamics in the light-harvesting complex 2 of Rhodopseudomonas acidophila by two-dimensional electronic spectroscopy. We find that, although at cryogenic temperature energy relaxation is very rapid, exciton mobility is limited over a significant range of excitation energies. This points to the presence of a sub-200 fs, spatially local energy-relaxation mechanism and suggests that local trapping might contribute substantially more in cryogenic experiments than under physiological conditions where the thermal energy is comparable to or larger than the static disorder.


Assuntos
Beijerinckiaceae/química , Complexos de Proteínas Captadores de Luz/química , Teoria Quântica , Elétrons , Transferência de Energia , Análise Espectral , Temperatura
11.
Opt Express ; 28(25): 37752-37757, 2020 Dec 07.
Artigo em Inglês | MEDLINE | ID: mdl-33379604

RESUMO

Michelson interferometers have been routinely used in various applications ranging from testing optical components to interferometric time-resolved spectroscopy measurements. Traditionally, plate beamsplitters are employed to redistribute radiation between the two arms of an interferometer. However, such an interferometer is susceptible to relative phase fluctuations between the two arms resulting from vibrations of the beamsplitter. This drawback is circumvented in diffraction-grating-based interferometers, which are especially beneficial in applications where highly stable delays between the replica beams are required. In the vast majority of grating-based interferometers, reflective diffraction gratings are used as beamsplitters. Their diffraction efficiency, however, is strongly wavelength dependent. Therefore transmission-grating interferometers can be advantageous for spectroscopy methods, since they can provide high diffraction efficiency over a wide spectral range. Here, we present and characterize a transmission grating-based Michelson interferometer, which is practically dispersion-free, has intrinsically high symmetry and stability and moderate throughput efficiency, and is promising for a wide range of applications.

12.
Sci Adv ; 6(14): eaaz4888, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32284982

RESUMO

Photosynthesis is a highly optimized process from which valuable lessons can be learned about the operating principles in nature. Its primary steps involve energy transport operating near theoretical quantum limits in efficiency. Recently, extensive research was motivated by the hypothesis that nature used quantum coherences to direct energy transfer. This body of work, a cornerstone for the field of quantum biology, rests on the interpretation of small-amplitude oscillations in two-dimensional electronic spectra of photosynthetic complexes. This Review discusses recent work reexamining these claims and demonstrates that interexciton coherences are too short lived to have any functional significance in photosynthetic energy transfer. Instead, the observed long-lived coherences originate from impulsively excited vibrations, generally observed in femtosecond spectroscopy. These efforts, collectively, lead to a more detailed understanding of the quantum aspects of dissipation. Nature, rather than trying to avoid dissipation, exploits it via engineering of exciton-bath interaction to create efficient energy flow.


Assuntos
Transferência de Energia , Fotossíntese , Teoria Quântica , Algoritmos , Complexos de Proteínas Captadores de Luz/metabolismo , Modelos Teóricos , Análise Espectral
13.
Opt Express ; 27(16): 22970-22982, 2019 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-31510581

RESUMO

Broadband femtosecond laser pulses manipulated by pulse shapers based on a liquid crystal spatial light modulator (LC-SLM) inevitably experience periodic spectral distortions due to Fabry-Perot interference effects within the LC-SLM. We present a method, applicable to phase and amplitude pulse shapers based on dual LC-SLMs, that enables the calibration and suppression of the undesired spectral intensity modulations in a non-iterative fashion. We demonstrate that the method considerably improves the amplitude shaping fidelity of phase and amplitude pulse shapers without compromising the phase shaping properties.

14.
J Chem Phys ; 151(2): 024201, 2019 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-31301711

RESUMO

Two-dimensional electronic spectroscopy, and especially the polarization-controlled version of it, is the cutting edge technique for disentangling various types of coherences in molecules and molecular aggregates. In order to evaluate the electronic coherences, which often decay on a 100 fs time scale, the early population times have to be included in the analysis. However, signals in this region are typically plagued by several artifacts, especially in the unavoidable pulse overlap region. In this paper, we show that, in the case of polarization-controlled two-dimensional spectroscopy experiment, the early-time dynamics can be dominated by the "incorrect" pulse ordering signals. These signals can affect kinetics at positive times well beyond the pulse overlap region, especially when the "correct" pulse ordering signals are much weaker. Moreover, the "incorrect" pulse ordering contributions are oscillatory and overlap with the spectral signatures of energy transfer, which may lead to misinterpretation of "incorrect" pulse ordering signals for fast-decaying coherences.

15.
Opt Express ; 27(7): 10234-10246, 2019 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-31045167

RESUMO

Femtosecond spectroscopy is an important tool used for tracking rapid photoinduced processes in a variety of materials. To spatially map the processes in a sample would substantially expand the method's capabilities. This is, however, difficult to achieve, due to the necessity of using low-noise detection and maintaining feasible data acquisition time. Here, we demonstrate realization of an imaging pump-probe setup, featuring sub-100 fs temporal resolution, by using a straightforward modification of a standard pump-probe technique, which uses a randomly structured probe beam. The structured beam, made by a diffuser, enabled us to computationally reconstruct the maps of transient absorption dynamics based on the concept of compressed sensing. We demonstrate the setup's functionality in two proof-of-principle experiments, where we achieve spatial resolution of 20 µm. The presented concept provides a feasible route to imaging, by using the pump-probe technique and ultrafast spectroscopy in general.

16.
Nat Chem ; 10(7): 780-786, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29785033

RESUMO

The idea that excitonic (electronic) coherences are of fundamental importance to natural photosynthesis gained popularity when slowly dephasing quantum beats (QBs) were observed in the two-dimensional electronic spectra of the Fenna-Matthews-Olson (FMO) complex at 77 K. These were assigned to superpositions of excitonic states, a controversial interpretation, as the strong chromophore-environment interactions in the complex suggest fast dephasing. Although it has been pointed out that vibrational motion produces similar spectral signatures, a concrete assignment of these oscillatory signals to distinct physical processes is still lacking. Here we revisit the coherence dynamics of the FMO complex using polarization-controlled two-dimensional electronic spectroscopy, supported by theoretical modelling. We show that the long-lived QBs are exclusively vibrational in origin, whereas the dephasing of the electronic coherences is completed within 240 fs even at 77 K. We further find that specific vibrational coherences are produced via vibronically coupled excited states. The presence of such states suggests that vibronic coupling is relevant for photosynthetic energy transfer.

17.
J Phys Chem Lett ; 9(6): 1340-1345, 2018 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-29488385

RESUMO

Bacterial photosynthesis features robust and adaptable energy-harvesting processes in which light-harvesting proteins play a crucial role. The peripheral light-harvesting complex of the purple bacterium Allochromatium vinosum is particularly distinct, featuring a double peak structure in its B800 absorption band. Two hypotheses-not necessarily mutually exclusive-concerning the origin of this splitting have been proposed; either two distinct B800 bacteriochlorophyll site energies are involved, or an excitonic dimerization of bacteriochlorophylls within the B800 ring takes place. Through the use of two-dimensional electronic spectroscopy, we present unambiguous evidence that excitonic interaction shapes the split band. We further identify and characterize all of the energy transfer pathways within this complex by using a global kinetic fitting procedure. Our approach demonstrates how the combination of two-dimensional spectral resolution and self-consistent fitting allows for extraction of information on light-harvesting processes, which would otherwise be inaccessible due to signal congestion.

18.
Opt Express ; 26(25): 32900-32907, 2018 Dec 10.
Artigo em Inglês | MEDLINE | ID: mdl-30645450

RESUMO

Coherent phenomena have been widely suggested to play a role in efficient photosynthetic light harvesting and charge separation processes. To substantiate these ideas, separation of intramolecular vibrational coherences from purely electronic or mixed vibronic coherences is essential. To this end, polarization-controlled two-dimensional electronic spectroscopy has been shown to provide an effective selectivity. We show that analogous discrimination can be achieved in a transient grating experiment by employing the double-crossed polarization scheme. This is demonstrated in a study of bacterial reaction centers. Significantly faster acquisition times of these experiments make longer population time scans feasible, thereby achieving improved frequency resolution and allowing for accurate extraction of coherence frequencies and dephasing times. These parameters are crucial for the discussion on relevance of the measured coherences to energy or electron transfer phenomena.

19.
Sci Adv ; 3(9): e1603141, 2017 09.
Artigo em Inglês | MEDLINE | ID: mdl-28913419

RESUMO

Photosynthetic proteins have evolved over billions of years so as to undergo optimal energy transfer to the sites of charge separation. On the basis of spectroscopically detected quantum coherences, it has been suggested that this energy transfer is partially wavelike. This conclusion depends critically on the assignment of the coherences to the evolution of excitonic superpositions. We demonstrate that, for a bacterial reaction center protein, long-lived coherent spectroscopic oscillations, which bear canonical signatures of excitonic superpositions, are essentially vibrational excited-state coherences shifted to the ground state of the chromophores. We show that the appearance of these coherences arises from a release of electronic energy during energy transfer. Our results establish how energy migrates on vibrationally hot chromophores in the reaction center, and they call for a reexamination of claims of quantum energy transfer in photosynthesis.


Assuntos
Fenômenos Fisiológicos Bacterianos , Transferência de Energia , Teoria Quântica , Bactérias/metabolismo , Clorofila/metabolismo , Fotossíntese
20.
J Phys Chem Lett ; 8(10): 2344-2349, 2017 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-28493708

RESUMO

The role of quantum coherence in photochemical functions of molecular systems such as photosynthetic complexes is a broadly debated topic. Coexistence and intermixing of electronic and vibrational coherences has been proposed to be responsible for the observed long-lived coherences and high energy transfer efficiency. However, clear experimental evidence of coherences with different origins operating at the same time has been elusive. In this work, multidimensional spectra obtained from a six-porphyrin nanoring system are analyzed in detail with support from theoretical modeling. We uncover a great diversity of separable electronic, vibrational, and mixed coherences and show their cooperation in shaping the spectroscopic response. The results permit direct assignment of electronic and vibronic states and characterization of the excitation dynamics. The clear disentanglement of coherences in molecules with extended π-conjugation opens up new avenues for exploring coherent phenomena and understanding their importance for the function of complex systems.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA