Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 72
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Matrix Biol ; 124: 8-22, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37913834

RESUMO

The circadian clock in tendon regulates the daily rhythmic synthesis of collagen-I and the appearance and disappearance of small-diameter collagen fibrils in the extracellular matrix. How the fibrils are assembled and removed is not fully understood. Here, we first showed that the collagenase, membrane type I-matrix metalloproteinase (MT1-MMP, encoded by Mmp14), is regulated by the circadian clock in postnatal mouse tendon. Next, we generated tamoxifen-induced Col1a2-Cre-ERT2::Mmp14 KO mice (Mmp14 conditional knockout (CKO)). The CKO mice developed hind limb dorsiflexion and thickened tendons, which accumulated narrow-diameter collagen fibrils causing ultrastructural disorganization. Mass spectrometry of control tendons identified 1195 proteins of which 212 showed time-dependent abundance. In Mmp14 CKO mice 19 proteins had reversed temporal abundance and 176 proteins lost time dependency. Among these, the collagen crosslinking enzymes lysyl oxidase-like 1 (LOXL1) and lysyl hydroxylase 1 (LH1; encoded by Plod2) were elevated and had lost time-dependent regulation. High-pressure chromatography confirmed elevated levels of hydroxylysine aldehyde (pyridinoline) crosslinking of collagen in CKO tendons. As a result, collagen-I was refractory to extraction. We also showed that CRISPR-Cas9 deletion of Mmp14 from cultured fibroblasts resulted in loss of circadian clock rhythmicity of period 2 (PER2), and recombinant MT1-MMP was highly effective at cleaving soluble collagen-I but less effective at cleaving collagen pre-assembled into fibrils. In conclusion, our study shows that circadian clock-regulated Mmp14 controls the rhythmic synthesis of small diameter collagen fibrils, regulates collagen crosslinking, and its absence disrupts the circadian clock and matrisome in tendon fibroblasts.


Assuntos
Colágeno , Metaloproteinase 14 da Matriz , Animais , Camundongos , Ritmo Circadiano , Colágeno/metabolismo , Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Homeostase , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo
3.
Am J Physiol Cell Physiol ; 323(4): C1290-C1303, 2022 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-36094433

RESUMO

Maintenance of skin homeostasis is a highly regulated and complex process involving a continuous remodeling by several extracellular matrix proteases, including metalloproteinases. The expression and activity of all metalloproteinases are under strict control, and their deregulation is often associated with diseases or chronic conditions, thereby being considered popular targets for developing new therapeutics. This review will highlight metalloproteinases of the MMP and ADAM families with functions in dermal homeostasis and give some insights into the mechanisms regulating their activity and expression. Furthermore, we discuss how the dysregulation of the most prominent family members affects dermal homeostasis by triggering disease development and influencing progression, focusing on cancer and aging. Here, recent discoveries and new approaches that target or exploit metalloproteinase activity in therapy are emphasized. The potential of naturally derived components in regulating metalloproteinase expression and activity in disease is discussed.


Assuntos
Matriz Extracelular , Neoplasias , Matriz Extracelular/metabolismo , Homeostase , Humanos , Metaloproteinases da Matriz/metabolismo , Neoplasias/metabolismo , Proteólise
4.
Eur J Cell Biol ; 101(4): 151276, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36162272

RESUMO

Early lethality of mice with complete deletion of the matrix metalloproteinase MMP14 emphasized the proteases' pleiotropic functions. MMP14 deletion in adult dermal fibroblasts (MMP14Sf-/-) caused collagen type I accumulation and upregulation of MMP3 expression. To identify the compensatory role of MMP3, mice were generated with MMP3 deletion in addition to MMP14 loss in fibroblasts. These double deficient mice displayed a fibrotic phenotype in skin and tendons as detected in MMP14Sf-/- mice, but no additional obvious defects were detected. However, challenging the mice with full thickness excision wounds resulted in delayed closure of early wounds in the double deficient mice compared to wildtype and MMP14 single knockout controls. Over time wounds closed and epidermal integrity was restored. Interestingly, on day seven, post-wounding myofibroblast density was lower in the wounds of all knockout than in controls, they were higher on day 14. The delayed resolution of myofibroblasts from the granulation tissue is paralleled by reduced apoptosis of these cells, although proliferation of myofibroblasts is induced in the double deficient mice. Further analysis showed comparable TGFß1 and TGFßR1 expression among all genotypes. In addition, in vitro, fibroblasts lacking MMP3 and MMP14 retained their ability to differentiate into myofibroblasts in response to TGFß1 treatment and mechanical stress. However, in vivo, p-Smad2 was reduced in myofibroblasts at day 5 post-wounding, in double, but most significant in single knockout, indicating their involvement in TGFß1 activation. Thus, although MMP3 does not compensate for the lack of fibroblast-MMP14 in tissue homeostasis, simultaneous deletion of both proteases in fibroblasts delays wound closure during skin repair. Notably, single and double deficiency of these proteases modulates myofibroblast formation and resolution in wounds.


Assuntos
Metaloproteinase 14 da Matriz , Metaloproteinase 3 da Matriz , Pele , Cicatrização , Animais , Camundongos , Fibroblastos , Tecido de Granulação , Metaloproteinase 3 da Matriz/genética , Metaloproteinase 3 da Matriz/metabolismo , Miofibroblastos/metabolismo , Pele/metabolismo , Cicatrização/genética , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo
5.
Front Mol Biosci ; 9: 864302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35558554

RESUMO

The extracellular matrix remodeling in the skin results from a delicate balance of synthesis and degradation of matrix components, ensuring tissue homeostasis. These processes are altered during tumor invasion and growth, generating a microenvironment that supports growth, invasion, and metastasis. Apart from the cellular component, the tumor microenvironment is rich in extracellular matrix components and bound factors that provide structure and signals to the tumor and stromal cells. The continuous remodeling in the tissue compartment sustains the developing tumor during the various phases providing matrices and proteolytic enzymes. These are produced by cancer cells and stromal fibroblasts. In addition to fostering tumor growth, the expression of specific extracellular matrix proteins and proteinases supports tumor invasion after the initial therapeutic response. Lately, the expression and structural modification of matrices were also associated with therapeutic resistance. This review will focus on the significant alterations in the extracellular matrix components and the function of metalloproteinases that influence skin cancer progression and support the acquisition of therapeutic resistance.

6.
EMBO Rep ; 23(6): e53608, 2022 06 07.
Artigo em Inglês | MEDLINE | ID: mdl-35437868

RESUMO

Elevated expression of the X-linked inhibitor of apoptosis protein (XIAP) has been frequently reported in malignant melanoma suggesting that XIAP renders apoptosis resistance and thereby supports melanoma progression. Independent of its anti-apoptotic function, XIAP mediates cellular inflammatory signalling and promotes immunity against bacterial infection. The pro-inflammatory function of XIAP has not yet been considered in cancer. By providing detailed in vitro analyses, utilising two independent mouse melanoma models and including human melanoma samples, we show here that XIAP is an important mediator of melanoma neutrophil infiltration. Neutrophils represent a major driver of melanoma progression and are increasingly considered as a valuable therapeutic target in solid cancer. Our data reveal that XIAP ubiquitylates RIPK2, involve TAB1/RIPK2 complex and induce the transcriptional up-regulation and secretion of chemokines such as IL8, that are responsible for intra-tumour neutrophil accumulation. Alteration of the XIAP-RIPK2-TAB1 inflammatory axis or the depletion of neutrophils in mice reduced melanoma growth. Our data shed new light on how XIAP contributes to tumour growth and provides important insights for novel XIAP targeting strategies in cancer.


Assuntos
Proteínas Inibidoras de Apoptose , Melanoma , Infiltração de Neutrófilos , Neoplasias Cutâneas , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X , Proteínas Adaptadoras de Transdução de Sinal/imunologia , Animais , Apoptose/genética , Apoptose/imunologia , Modelos Animais de Doenças , Humanos , Proteínas Inibidoras de Apoptose/genética , Proteínas Inibidoras de Apoptose/imunologia , Interleucina-8/biossíntese , Melanoma/genética , Melanoma/imunologia , Camundongos , Infiltração de Neutrófilos/genética , Infiltração de Neutrófilos/imunologia , Proteína Serina-Treonina Quinase 2 de Interação com Receptor/imunologia , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/imunologia , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo
7.
J Invest Dermatol ; 142(7): 1923-1933.e5, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-34968503

RESUMO

Matrix metalloproteinase (MMP) 14 belongs to a large family of zinc-dependent endopeptidases and plays a critical role in skin physiological and pathological processes. Complete loss of the protease resulted in severe developmental defects leading to early death. However, because of the premature death of the mice, the functional significance for endothelial cell (EC) expression of MMP14 in skin physiology and pathology in vivo after birth is yet unknown. Using a mouse model with constitutive EC-specific deletion of Mmp14 (Mmp14EC‒/‒), we showed that mice developed and bred normal, but melanoma growth and metastasis were reduced. Although vascularity was unaltered, vessel permeability was decreased. Deletion of MMP14 in ECs led to increased vessel coverage by pericytes and vascular endothelial-cadherin expression in mice in vivo and in vitro but not in human ECs. Endothelial nitric oxide synthase expression and nitric oxide production were significantly reduced in Mmp14EC‒/‒ ECs and MMP14-silenced human umbilical vein ECs. A direct correlation between endothelial nitric oxide synthase and MMP14 expression was detected in intratumoral vessels of human malignant melanomas. Altogether, we show that endothelial MMP14 controls tumor vessel function during melanoma growth. These data suggest that EC-derived MMP14 direct targeting alone or with vascular stabilizing agents may be therapeutically crucial in inhibiting melanoma growth and metastasis.


Assuntos
Metaloproteinase 14 da Matriz , Melanoma , Animais , Permeabilidade Capilar , Células Endoteliais/metabolismo , Humanos , Metaloproteinase 14 da Matriz/genética , Metaloproteinase 14 da Matriz/metabolismo , Melanoma/irrigação sanguínea , Melanoma/patologia , Camundongos , Metástase Neoplásica , Óxido Nítrico Sintase Tipo III/metabolismo
8.
Int J Mol Sci ; 22(22)2021 Nov 12.
Artigo em Inglês | MEDLINE | ID: mdl-34830157

RESUMO

Maintaining a balanced state in remodeling the extracellular matrix is crucial for tissue homeostasis, and this process is altered during skin cancer progression. In melanoma, several proteolytic enzymes are expressed in a time and compartmentalized manner to support tumor progression by generating a permissive environment. One of these proteases is the matrix metalloproteinase 14 (MMP14). We could previously show that deletion of MMP14 in dermal fibroblasts results in the generation of a fibrotic-like skin in which melanoma growth is impaired. That was primarily due to collagen I accumulation due to lack of the collagenolytic activity of MMP14. However, as well as collagen I processing, MMP14 can also process several extracellular matrices. We investigated extracellular matrix alterations occurring in the MMP14-deleted fibroblasts that can contribute to the modulation of melanoma growth. The matrix deposited by cultured MMP14-deleted fibroblast displayed an antiproliferative and anti-migratory effect on melanoma cells in vitro. Analysis of the secreted and deposited-decellularized fibroblast's matrix identified a few altered proteins, among which the most significantly changed was collagen XIV. This collagen was increased because of post-translational events, while de novo synthesis was unchanged. Collagen XIV as a substrate was not pro-proliferative, pro-migratory, or adhesive, suggesting a negative regulatory role on melanoma cells. Consistent with that, increasing collagen XIV concentration in wild-type fibroblast-matrix led to reduced melanoma proliferation, migration, and adhesion. In support of its anti-tumor activity, enhanced accumulation of collagen XIV was detected in peritumoral areas of melanoma grown in mice with the fibroblast's deletion of MMP14. In advanced human melanoma samples, we detected reduced expression of collagen XIV compared to benign nevi, which showed a robust expression of this molecule around melanocytic nests. This study shows that loss of fibroblast-MMP14 affects melanoma growth through altering the peritumoral extracellular matrix (ECM) composition, with collagen XIV being a modulator of melanoma progression and a new proteolytic substrate to MMP14.


Assuntos
Matriz Extracelular/metabolismo , Fibroblastos/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Melanoma/metabolismo , Neoplasias Cutâneas/metabolismo , Animais , Linhagem Celular Tumoral , Movimento Celular/genética , Proliferação de Células/genética , Células Cultivadas , Colágeno/metabolismo , Humanos , Imuno-Histoquímica , Metaloproteinase 14 da Matriz/genética , Melanoma/genética , Melanoma/patologia , Camundongos Knockout , Camundongos Transgênicos , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Carga Tumoral/genética
9.
Immunity ; 54(11): 2514-2530.e7, 2021 11 09.
Artigo em Inglês | MEDLINE | ID: mdl-34717796

RESUMO

Human plasmacytoid dendritic cells (pDCs) are interleukin-3 (IL-3)-dependent cells implicated in autoimmunity, but the role of IL-3 in pDC biology is poorly understood. We found that IL-3-induced Janus kinase 2-dependent expression of SLC7A5 and SLC3A2, which comprise the large neutral amino acid transporter, was required for mammalian target of rapamycin complex 1 (mTORC1) nutrient sensor activation in response to toll-like receptor agonists. mTORC1 facilitated increased anabolic activity resulting in type I interferon, tumor necrosis factor, and chemokine production and the expression of the cystine transporter SLC7A11. Loss of function of these amino acid transporters synergistically blocked cytokine production by pDCs. Comparison of in vitro-activated pDCs with those from lupus nephritis lesions identified not only SLC7A5, SLC3A2, and SLC7A11 but also ectonucleotide pyrophosphatase-phosphodiesterase 2 (ENPP2) as components of a shared transcriptional signature, and ENPP2 inhibition also blocked cytokine production. Our data identify additional therapeutic targets for autoimmune diseases in which pDCs are implicated.


Assuntos
Sistemas de Transporte de Aminoácidos/genética , Células Dendríticas/imunologia , Células Dendríticas/metabolismo , Regulação da Expressão Gênica , Sistemas de Transporte de Aminoácidos/metabolismo , Autoimunidade , Biomarcadores , Citocinas/genética , Citocinas/metabolismo , Suscetibilidade a Doenças , Metabolismo Energético , Humanos , Imunidade , Transdução de Sinais
10.
Cancers (Basel) ; 13(8)2021 Apr 20.
Artigo em Inglês | MEDLINE | ID: mdl-33924099

RESUMO

Skin homeostasis results from balanced synthesis and degradation of the extracellular matrix in the dermis. Deletion of the proteolytic enzyme MMP14 in dermal fibroblasts (MMP14Sf-/-) leads to a fibrotic skin phenotype with the accumulation of collagen type I, resulting from impaired proteolysis. Here, we show that melanoma growth in these mouse fibrotic dermal samples was decreased, paralleled by reduced tumor cell proliferation and vessel density. Using atomic force microscopy, we found increased peritumoral matrix stiffness of early but not late melanomas in the absence of fibroblast-derived MMP14. However, total collagen levels were increased at late melanoma stages in MMP14Sf-/- mice compared to controls. In ex vivo invasion assays, melanoma cells formed smaller tumor islands in MMP14Sf-/- skin, indicating that MMP14-dependent matrix accumulation regulates tumor growth. In line with these data, in vitro melanoma cell growth was inhibited in high collagen 3D spheroids or stiff substrates. Most importantly, in vivo induction of fibrosis using bleomycin reduced melanoma tumor growth. In summary, we show that MMP14 expression in stromal fibroblasts regulates melanoma tumor progression by modifying the peritumoral matrix and point to collagen accumulation as a negative regulator of melanoma.

11.
Traffic ; 22(1-2): 6-22, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33225555

RESUMO

In eukaryotic cells, clathrin-mediated endocytosis (CME) is a central pathway for the internalization of proteins from the cell surface, thereby contributing to the maintenance of the plasma membrane protein composition. A key component for the formation of endocytic clathrin-coated vesicles (CCVs) is AP-2, as it sequesters cargo membrane proteins, recruits a multitude of other endocytic factors and initiates clathrin polymerization. Here, we inhibited CME by depletion of AP-2 and explored the consequences for the plasma membrane proteome. Quantitative analysis revealed accumulation of major constituents of the endosomal-lysosomal system reflecting a block in retrieval by compensatory CME. The noticeable enrichment of integrins and blockage of their turnover resulted in severely impaired cell migration. Rare proteins such as the anti-cancer drug target CA9 and tumor markers (CD73, CD164, CD302) were significantly enriched. The AP-2 knockdown attenuated the global endocytic capacity, but clathrin-independent entry pathways were still operating, as indicated by persistent internalization of specific membrane-spanning and GPI-anchored receptors (PVR, IGF1R, CD55, TNAP). We hypothesize that blocking AP-2 function and thus inhibiting CME may be a novel approach to identify new druggable targets, or to increase their residence time at the plasma membrane, thereby increasing the probability for efficient therapeutic intervention.


Assuntos
Endocitose , Proteoma , Membrana Celular , Clatrina , Vesículas Revestidas por Clatrina
12.
Biomolecules ; 10(9)2020 09 07.
Artigo em Inglês | MEDLINE | ID: mdl-32906814

RESUMO

ADAM9 is a metalloproteinase strongly expressed at the tumor-stroma border by both tumor and stromal cells. We previously showed that the host deletion of ADAM9 leads to enhanced growth of grafted B16F1 melanoma cells by a mechanism mediated by TIMP1 and the TNF-α/sTNFR1 pathway. This study aimed to dissect the structural modifications in the tumor microenvironment due to the stromal expression of ADAM9 during melanoma progression. We performed proteomic analysis of peritumoral areas of ADAM9 deleted mice and identified the altered expression of several matrix proteins. These include decorin, collagen type XIV, fibronectin, and collagen type I. Analysis of these matrices in the matrix producing cells of the dermis, fibroblasts, showed that ADAM9-/- and wild type fibroblasts synthesize and secreted almost comparable amounts of decorin. Conversely, collagen type I expression was moderately, but not significantly, decreased at the transcriptional level, and the protein increased in ADAM9-/- fibroblast mono- and co-cultures with melanoma media. We show here for the first time that ADAM9 can release a collagen fragment. Still, it is not able to degrade collagen type I. However, the deletion of ADAM9 in fibroblasts resulted in reduced MMP-13 and -14 expression that may account for the reduced processing of collagen type I. Altogether, the data show that the ablation of ADAM9 in the host leads to the altered expression of peritumoral extracellular matrix proteins that generate a more favorable environment for melanoma cell growth. These data underscore the suppressive role of stromal expression of ADAM9 in tumor growth and call for a better understanding of how protease activities function in a cellular context for improved targeting.


Assuntos
Proteínas ADAM/genética , Proteínas ADAM/metabolismo , Matriz Extracelular/metabolismo , Melanoma/metabolismo , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Animais , Células COS , Linhagem Celular Tumoral , Proliferação de Células/genética , Chlorocebus aethiops , Colágeno/metabolismo , Colágeno Tipo I/metabolismo , Decorina/metabolismo , Fibroblastos/metabolismo , Fibronectinas/metabolismo , Metaloproteinase 13 da Matriz/metabolismo , Metaloproteinase 14 da Matriz/metabolismo , Melanoma/genética , Melanoma/patologia , Camundongos , Células Estromais/metabolismo
14.
Emerg Infect Dis ; 25(8): 1600-16002, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31310208

RESUMO

Cutavirus was previously found in cutaneous melanoma. We detected cutavirus DNA in only 2/185 melanoma biopsies and in 0/52 melanoma metastases from patients in Germany. Viral DNA was localized in the upper epidermal layers. Swab specimens from healthy skin were cutavirus positive for 3.8% (9/237) of immunocompetent and 17.1% (35/205) of HIV-positive men.


Assuntos
Melanoma/epidemiologia , Melanoma/etiologia , Infecções por Parvoviridae/complicações , Parvovirus , Biópsia , DNA Viral , Alemanha/epidemiologia , Humanos , Melanoma/diagnóstico , Estadiamento de Neoplasias , Infecções por Parvoviridae/virologia , Neoplasias Cutâneas/diagnóstico , Neoplasias Cutâneas/epidemiologia , Neoplasias Cutâneas/etiologia , Carga Viral , Melanoma Maligno Cutâneo
15.
Cell Oncol (Dordr) ; 42(3): 319-329, 2019 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-30778852

RESUMO

BACKGROUND: The X-linked inhibitor of apoptosis (XIAP) is a potent cellular inhibitor of apoptosis, based on its unique capability to bind and to inhibit caspases. However, XIAP is also involved in a number of additional cellular activities independent of its caspase inhibitory function. The aim of this study was to investigate whether modulation of XIAP expression affects apoptosis-independent functions of XIAP in melanoma cells, restores their sensitivity to apoptosis and/or affects their invasive and metastatic capacities. METHODS: XIAP protein levels were analyzed by immunohistochemical staining of human tissues and by Western blotting of melanoma cell lysates. The effects of pharmacological inhibition or of XIAP down-regulation were investigated using ex-vivo and transwell invasion assays. The biological effects of XIAP down-regulation on melanoma cells were analyzed in vitro using BrdU/PI, nucleosome quantification, adhesion and migration assays. In addition, new XIAP binding partners were identified by co-immunoprecipitation followed by mass spectrometry. RESULTS: Here we found that the expression of XIAP is increased in metastatic melanomas and in invasive melanoma-derived cell lines. We also found that the bivalent IAP antagonist birinapant significantly reduced the invasive capability of melanoma cells. This reduction could be reproduced by downregulating XIAP in melanoma cells. Furthermore, we found that the migration of melanoma cells and the formation of focal adhesions at cellular borders on fibronectin-coated surfaces were significantly reduced upon XIAP knockdown. This reduction may depend on an altered vimentin-XIAP association, since we identified vimentin as a new binding partner of XIAP. As a corollary of these molecular alterations, we found that XIAP down-regulation in melanoma cells led to a significant decrease in invasion of dermal skin equivalents. CONCLUSION: From our data we conclude that XIAP acts as a multifunctional pro-metastatic protein in skin melanomas and, as a consequence, that XIAP may serve as a therapeutic target for these melanomas.


Assuntos
Melanoma/metabolismo , Vimentina/metabolismo , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/metabolismo , Apoptose/efeitos dos fármacos , Caspases/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Dipeptídeos/farmacologia , Humanos , Indóis/farmacologia , Proteínas Inibidoras de Apoptose/antagonistas & inibidores , Proteínas Inibidoras de Apoptose/metabolismo , Melanoma/genética , Melanoma/patologia , Invasividade Neoplásica , Ligação Proteica , Proteínas Inibidoras de Apoptose Ligadas ao Cromossomo X/genética
16.
Toxicon ; 159: 22-31, 2019 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-30611825

RESUMO

Leucurogin is an ECD disintegrin-like protein, cloned from Bothrops leucurus venom gland. This new protein, encompassing the disintegrin region of a PIII metalloproteinase, is produced by recombinant technology and its biological and functional activity was partially characterized in this study. Biological activity was characterized in vitro using human fibroblasts. Functional activity of leucurogin was analysed in vitro and in vivo with murine B16F10 Nex-2 and human melanoma BLM cells. The results show that leucurogin inhibits cellular processes dependent on collagen type I. In a competition assay with collagen, leucurogin inhibits, in a dose-dependent manner, the adhesion of fibroblast to collagen. At 10 µM leucurogin reduces adhesion (40%) and migration (70%) of hFb and inhibits migration (32%) and proliferation (65%) of BLM cells. At 2.5 µM leucurogin inhibits 80% cell proliferation of B16F10 Nex-2 melanoma cells. At 4.8 µM leucurogin inhibits, in vitro, the vascular structures formation by endothelial cells by 66%. Leucurogin, injected intraperitoneally, i.p. (5 µg/animal, two-month old C57/Bl6 male mice) on alternate days for 15 days, inhibits lung metastasis of B16F10 Nex-2 cells by 70-75%. In the treatment of human melanoma, grafted intradermally in the nude mice flank, leucurogin (7.5 µg/kg in alternate days during 17 days) inhibits tumor growth by more than 40%. Leucurogin can be considered a promising agent for melanoma treatment.


Assuntos
Venenos de Crotalídeos/química , Desintegrinas/uso terapêutico , Melanoma/tratamento farmacológico , Proteínas Recombinantes/uso terapêutico , Animais , Bothrops/metabolismo , Adesão Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Movimento Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Desintegrinas/química , Desintegrinas/isolamento & purificação , Fibroblastos , Células Endoteliais da Veia Umbilical Humana , Humanos , Neoplasias Pulmonares/tratamento farmacológico , Neoplasias Pulmonares/secundário , Masculino , Melanoma/patologia , Metaloproteases/química , Metaloproteases/isolamento & purificação , Camundongos , Proteínas Recombinantes/química
17.
Adv Drug Deliv Rev ; 146: 3-16, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-29709492

RESUMO

Supramolecular networks composed of multi-domain ECM proteins represent intricate cellular microenvironments which are required to balance tissue homeostasis and direct remodeling. Structural deficiency in ECM proteins results in imbalances in ECM-cell communication resulting often times in fibrotic reactions. To understand how individual components of the ECM integrate communication with the cell surface by presenting growth factors or providing fine-tuned biomechanical properties is mandatory for gaining a better understanding of disease mechanisms in the quest for new therapeutic approaches. Here we provide an overview about what we can learn from inherited connective tissue disorders caused primarily by mutations in fibrillin-1 and binding partners as well as by altered ECM processing leading to defined structural changes and similar functional knock-in mouse models. We will utilize this knowledge to propose new molecular hypotheses which should be tested in future studies.


Assuntos
Fibrilinas/metabolismo , Fibrose/metabolismo , Microfibrilas/metabolismo , Peptídeo Hidrolases/metabolismo , Animais , Humanos
18.
Matrix Biol ; 80: 59-71, 2019 07.
Artigo em Inglês | MEDLINE | ID: mdl-30273664

RESUMO

Laminins are the major basement membrane (BM) components and are heterotrimers composed of an α, a ß and a γ chain. In skin, laminins are present in basement membranes surrounding vascular structures, nerves, adipose tissue and in the specialized junctional BM between the epidermis and dermis. The main laminin isoforms in the dermo-epidermal BM are laminin­332, laminin­511 and laminin­211, the latter being restricted to hair follicles (HFs). The laminin γ1 chain is the most abundant γ chain; its global ablation in mice leads to early embryonic lethality at E5.5. To elucidate the cellular function of the γ1 chain in skin, we generated mice with keratinocyte-specific deletion of this chain (Lamc1EKO) by using the keratin (K)14-Cre/loxP system. These mice showed delayed coat pigmentation despite normal melanocyte counts in the skin. However, levels of differentiation-specific melanocyte enzymes TRP­1, TRP­2 and tyrosinase were reduced in Lamc1EKO mice, and melanocytes failed to migrate to their differentiation niche in HFs and accumulated in the IFE. These results suggested that the pigmentation defect results from impaired melanocyte migration. The impaired migratory capacity of melanocytes is due to the altered composition of laminins in the BM of Lamc1EKO mice: Loss of keratinocyte-derived pro-migratory laminin­511 is not compensated by ectopically deposited fibroblast-derived laminin­211. Furthermore, contact of melanocytes with recombinant laminin­511, but not with laminin­211, induces the expression of the chemokine receptor CXCR4 on melanocytes, needed for SDF­1 (stromal cell­derived factor­1)-mediated migration into HFs. We here demonstrate that laminin­511 controls the differentiation of melanocytes by regulating their migration from the epidermis into HFs and by activating CXCR4 expression on melanocytes required for their recruitment into HFs in an SDF­1-dependent manner.


Assuntos
Quimiocina CXCL12/metabolismo , Laminina/genética , Laminina/metabolismo , Melanócitos/citologia , Receptores CXCR4/metabolismo , Animais , Adesão Celular , Diferenciação Celular , Movimento Celular , Técnicas de Inativação de Genes , Oxirredutases Intramoleculares/metabolismo , Queratinócitos/metabolismo , Melanócitos/metabolismo , Glicoproteínas de Membrana/metabolismo , Camundongos , Monofenol Mono-Oxigenase/metabolismo , Oxirredutases/metabolismo , Pigmentação da Pele
19.
Oncotarget ; 9(75): 34142-34158, 2018 Sep 25.
Artigo em Inglês | MEDLINE | ID: mdl-30344928

RESUMO

Phospholipids regulate numerous cellular functions and their deregulation is known to be associated with cancer development. Here, we show for the first time that expression of the E6 oncoprotein of human papillomavirus type 8 (HPV8) leads to a profound increase in nuclear phosphatidylinositol-4,5-bisphosphate (PI(4,5)P2) lipid levels in monolayer cultures, that led to an aberrant phospholipidation of cellular proteins. Elevated PI(4,5)P2 levels in organotypic skin cultures, skin tumors of K14-HPV8-E6 transgenic mice as well as HPV8 positive skin carcinomas highly suggest a decisive role of PI(4,5)P2 in HPV associated squamous-cell-carcinoma development. Furthermore, mass-spectrometric analysis confirmed an increase of PI(4,5)P2, which was characterized by a shift in the distribution of lipid species. PI(4,5)P2 upregulation was independent of E6 interference with MAML1. However, E6 does interfere with the PI(4,5)P2 metabolic pathway by upregulation of phosphatidylinositol-4-phosphate-5-kinase type I and phosphatidylinositol-5-phosphate 4-kinase type II as well as the binding to 5'-phosphatase OCRL and phosphatidylinositol. All of these mechanisms combined may contribute to PI(4,5)P2 elevation in E6 positive cells. The identification of CAND1 and SND1 - two proteins known to be involved in carcinogenic processes - were significantly stronger phospholipidized in the presence of E6. In conclusion we provide evidence that the modulation of the PI(4,5)P2 metabolism is a novel oncogenic mechanism relevant for HPV-induced carcinogenesis.

20.
Front Immunol ; 9: 1358, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29967610

RESUMO

Secretion of extracellular vesicles (EVs) is a ubiquitous mechanism of intercellular communication based on the exchange of effector molecules, such as growth factors, cytokines, and nucleic acids. Recent studies identified tumor-derived EVs as central players in tumor progression and the establishment of the tumor microenvironment (TME). However, studies on EVs from classical Hodgkin lymphoma (cHL) are limited. The growth of malignant Hodgkin and Reed-Sternberg (HRS) cells depends on the TME, which is actively shaped by a complex interaction of HRS cells and stromal cells, such as fibroblasts and immune cells. HRS cells secrete cytokines and angiogenic factors thus recruiting and inducing the proliferation of surrounding cells to finally deploy an immunosuppressive TME. In this study, we aimed to investigate the role of tumor cell-derived EVs within this complex scenario. We observed that EVs collected from Hodgkin lymphoma (HL) cells were internalized by fibroblasts and triggered their migration capacity. EV-treated fibroblasts were characterized by an inflammatory phenotype and an upregulation of alpha-smooth muscle actin (α-SMA), a marker of cancer-associated fibroblasts. Analysis of the secretome of EV-treated fibroblast revealed an enhanced release of pro-inflammatory cytokines (e.g., IL-1α, IL-6, and TNF-α), growth factors (G-CSF and GM-CSF), and pro-angiogenic factors such as VEGF. These soluble factors are known to promote HL progression. In line, ingenuity pathway analysis identified inflammatory pathways, including TNF-α/NF-κB-signaling, as key factors directing the EV-dependent phenotype changes in fibroblasts. Confirming the in vitro data, we demonstrated that EVs promote α-SMA expression in fibroblasts and the expression of proangiogenic factors using a xenograft HL model. Collectively, we demonstrate that HL EVs alter the phenotype of fibroblasts to support tumor growth, and thus shed light on the role of EVs for the establishment of the tumor-promoting TME in HL.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA