Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 13 de 13
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
3.
J Neuroinflammation ; 19(1): 271, 2022 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-36352421

RESUMO

Brachial plexus root avulsion (BPRA) is frequently caused by high-energy trauma including traffic accident and birth trauma, which will induces massive motoneurons (MNs) death as well as loss of motor and sensory function in the upper limb. The death of MNs is attributed to energy deficiency, neuroinflammation and oxidative stress at the injured ventral horn of spinal cord triggered by BPRA injury. It has been reported which aldose reductase (AR), an endogenous enzyme that catalyzes fructose synthesis, positively correlates with the poor prognosis following cerebral ischemic injury, diabetic retinopathy and diabetic peripheral neuropathy. However, the role of AR in BPRA remains unknown. Herein, we used a mouse model and found that in the spinal cord of BPRA mice, the upregulation of AR correlated significantly with (1) an inactivated SIRT1-AMPK-mTOR pathway and disrupted autophagy; (2) increased byproducts accumulation of lipid peroxidation metabolism and neuroinflammation; and (3) increased MNs death. Furthermore, our results demonstrated the role of AR in BPRA injury whereby the absence of AR (AR knockout mice, AR-/-) prevented the hyper-neuroinflammation and disrupted autophagy as well as motor neuron death caused by BPRA injury. Finally, we further demonstrate that AR inhibitor epalrestat is neuroprotective against BPRA injury by increasing autophagy level, alleviating neuroinflammation and rescuing MNs death in mice. Collectively, our data demonstrate that the AR upregulation in the spinal cord is an important factor contributing to autophagy disruption, neuroinflammation and MNs death following brachial plexus roots avulsion in mice. Our study also provides a promising therapy drug to assist re-implantation surgery for the treatment of BPRA.


Assuntos
Aldeído Redutase , Plexo Braquial , Animais , Camundongos , Aldeído Redutase/genética , Aldeído Redutase/metabolismo , Autofagia , Plexo Braquial/lesões , Plexo Braquial/metabolismo , Neurônios Motores/metabolismo , Doenças Neuroinflamatórias , Ratos Sprague-Dawley
4.
BMC Med Educ ; 22(1): 459, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35705984

RESUMO

BACKGROUND: Senior medical students feel unprepared for surgical procedures and care for surgery patients when they begin their internship. This study sought to introduce and evaluate a surgical boot camp training for senior medical students. METHODS: A 44-h surgical boot camp program of lectures on clinical practice simulation, anatomical dissections, and simulated operation on cadavers was designed, implemented, and evaluated during the 2018 to 2019 academic year. A self-administered questionnaire was used to assess students' perceptions of the content, delivery, and self-confidence. The mini-Clinical Evaluation Exercise (mini-CEX) and the Operative Performance Rating System were used to assess skills essential to good clinical care and to facilitate feedback. RESULTS: Over 93% of the students were satisfied with the surgical boot camp, training equipment, and learning materials provided. After six sessions of training, 85.3% reported gaining self-confidence and performed better in some surgical procedures such as major gastrectomy. The mini-CEX scores suggested significant improvement in the students' clinical skills, attitudes, and behaviors (P < 0.01). Ninety-eight percent of students felt that the anatomical knowledge taught met their needs. The scores of the Operative Performance Rating System suggested that the students' surgical skills such as instruments handling, incising, treatment of surrounding tissues (blood vessels, nerves), and smoothness of the whole operation had increased significantly following the surgical boot camp (All P < 0.01). CONCLUSION: The surgical boot camp curriculum improved students' satisfaction and confidence in core clinical practice competencies. Therefore, medical schools the world over should continue to seek ways to bridge the gaps between pre-clinical, clinical, and internship training.


Assuntos
Internato e Residência , Estudantes de Medicina , Competência Clínica , Currículo , Educação de Pós-Graduação em Medicina/métodos , Humanos
5.
Anat Sci Educ ; 15(5): 928-942, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35766990

RESUMO

The present study evaluated the students' psychological well-being, experiences, performance, and perception of learning regional anatomy remotely. A regional anatomy remote learning curriculum was designed and learning materials were delivered virtually to 120 undergraduate medical students at Jinan University, China. All the students consented and voluntarily participated in this study by completing self-administered online questionnaires including the Zung's Self-Rating Anxiety and Depression Scales at the beginning and end of the learning session. A subset participated in focus group discussions. Most of the students (90.0%) positively evaluated the current distance learning model. More than 80% were satisfied with the content arrangement and coverage. Many students preferred virtual lectures (68.2%) and videos showing dissections (70.6%) during the distance learning sessions. However, writing laboratory reports and case-based learning were the least preferred modes of learning as they were only preferred by 23.2% and 14.1% of the students, respectively. There was no significant lockdown-related anxiety or depression reported by students using depression and anxiety scales as well as feedback from focus group discussions. The surveyed students' confidence scores in distance learning were significantly higher after 5 weeks than at the beginning of the session (3.05 ± 0.83 vs. 3.70 ± 0.71, P < 0.05). Furthermore, the present results showed no significant differences between the current group's academic performance in the unit tests as well as the final overall evaluation for different parts of the course compared to that of the previous year's cohort. The findings above were congruent with focus group discussion data that the use of the online teaching platform for regional anatomy significantly improved the students' confidence in virtual and self-directed learning and did not negatively affect their academic performance.


Assuntos
Anatomia , COVID-19 , Educação de Graduação em Medicina , Estudantes de Medicina , Anatomia/educação , Anatomia Regional/educação , Controle de Doenças Transmissíveis , Currículo , Educação de Graduação em Medicina/métodos , Humanos , Pandemias , Estudantes de Medicina/psicologia
6.
Brain Sci ; 11(7)2021 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-34202110

RESUMO

Dexmedetomidine, selective α2-adrenergic agonist dexmedetomidine, has been widely used clinically for sedation and anesthesia. The role of dexmedetomidine has been an interesting topic of neonatological and anesthetic research since a series of advantages of dexmedetomidine, such as enhancing recovery from surgery, reducing opioid prescription, decreasing sympathetic tone, inhibiting inflammatory reactions, and protecting organs, were reported. Particularly, an increasing number of animal studies have demonstrated that dexmedetomidine ameliorates the neurological outcomes associated with various brain and spinal cord injuries. In addition, a growing number of clinical trials have reported the efficacy of dexmedetomidine for decreasing the rates of postoperative neurological dysfunction, such as delirium and stroke, which strongly highlights the possibility of dexmedetomidine functioning as a neuroprotective agent for future clinical use. Mechanism studies have linked dexmedetomidine's neuroprotective properties with its modulation of neuroinflammation, apoptosis, oxidative stress, and synaptic plasticity via the α2-adrenergic receptor, dependently or independently. By reviewing recent advances and preclinical and clinical evidence on the neuroprotective effects of dexmedetomidine, we hope to provide a complete understanding of the above mechanism and provide insights into the potential efficacy of this agent in clinical use for patients.

7.
Cells ; 10(7)2021 06 28.
Artigo em Inglês | MEDLINE | ID: mdl-34203264

RESUMO

Brachial plexus root avulsions cause debilitating upper limb paralysis. Short-term neuroprotective treatments have reported preservation of motor neurons and function in model animals while reports of long-term benefits of such treatments are scarce, especially the morphological sequelae. This morphological study investigated the long-term suppression of c-Jun- and neuronal nitric oxide synthase (nNOS) (neuroprotective treatments for one month) on the motor neuron survival, ultrastructural features of lower motor neurons, and forelimb function at six months after brachial plexus roots avulsion. Neuroprotective treatments reduced oxidative stress and preserved ventral horn motor neurons at the end of the 28-day treatment period relative to vehicle treated ones. Motor neuron sparing was associated with suppression of c-Jun, nNOS, and pro-apoptotic proteins Bim and caspases at this time point. Following 6 months of survival, neutral red staining revealed a significant loss of most of the motor neurons and ventral horn atrophy in the avulsed C6, 7, and 8 cervical segments among the vehicle-treated rats (n = 4). However, rats that received neuroprotective treatments c-Jun JNK inhibitor, SP600125 (n = 4) and a selective inhibitor of nNOS, 7-nitroindazole (n = 4), retained over half of their motor neurons in the ipsilateral avulsed side compared. Myelinated axons in the avulsed ventral horns of vehicle-treated rats were smaller but numerous compared to the intact contralateral ventral horns or neuroprotective-treated groups. In the neuroprotective treatment groups, there was the preservation of myelin thickness around large-caliber axons. Ultrastructural evaluation also confirmed the preservation of organelles including mitochondria and synapses in the two groups that received neuroprotective treatments compared with vehicle controls. Also, forelimb functional evaluation demonstrated that neuroprotective treatments improved functional abilities in the rats. In conclusion, neuroprotective treatments aimed at suppressing degenerative c-Jun and nNOS attenuated apoptosis, provided long-term preservation of motor neurons, their organelles, ventral horn size, and forelimb function.


Assuntos
Plexo Braquial/fisiopatologia , Membro Anterior/fisiopatologia , Neurônios Motores/metabolismo , Neurônios Motores/ultraestrutura , Óxido Nítrico Sintase Tipo I/metabolismo , Proteínas Proto-Oncogênicas c-jun/metabolismo , Radiculopatia/fisiopatologia , Raízes Nervosas Espinhais/fisiopatologia , Animais , Células do Corno Anterior/efeitos dos fármacos , Células do Corno Anterior/patologia , Neurônios Motores/efeitos dos fármacos , Neuroproteção/efeitos dos fármacos , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , Estresse Nitrosativo/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos , Radiculopatia/tratamento farmacológico , Ratos Sprague-Dawley , Recuperação de Função Fisiológica/efeitos dos fármacos , Raízes Nervosas Espinhais/efeitos dos fármacos
8.
J Neuroimmunol ; 353: 577517, 2021 04 15.
Artigo em Inglês | MEDLINE | ID: mdl-33582398

RESUMO

Inflammation and tissue infiltration by various immune cells play a significant role in the pathogenesis of neurons suffering the central nervous systems diseases. Although brachial plexus root avulsion (BPRA) leads to dramatic motoneurons (MNs) death and permanent loss of function, however, the knowledge gap on cytokines and glial reaction in the spinal cord injury is still existing. The current study is sought to investigate the alteration of specific cytokine expression patterns of the BPRA injured spinal cord during an acute and subacute period. The cytokine assay, transmission electron microscopy, and histological staining were utilized to assess cytokine network alteration, ultrastructure morphology, and glial activation and MNs loss within two weeks post-injury on a mouse unilateral BPRA model. The BPRA injury caused a progressively spinal MNs loss, reduced the alpha-(α) MNs synaptic inputs, whereas enhanced glial fibrillary acidic protein (GFAP), ionized calcium-binding adaptor molecule-1 (IBA-1), F4/80 expression in ipsilateral but not the contralateral spinal segments. Additionally, cytokine assays revealed BPRA significantly altered the level of CXCL1, ICAM1, IP10, MCP-5, MIP1-α, and CD93. Notably, the elevated MIP1-α was mainly expressed in the injured spinal MNs. While the re-distribution of CD93 expression, from the cytoplasm to the nucleus, occasionally occurred at neurons of the ipsilateral spinal segment after injury. Overall, these findings suggest that the inflammatory cytokines associated with glial cell activation might contribute to the pathophysiology of the MNs death caused by nerve roots injury.


Assuntos
Neuropatias do Plexo Braquial/imunologia , Neuropatias do Plexo Braquial/patologia , Citocinas/imunologia , Neuroglia/imunologia , Radiculopatia/imunologia , Animais , Plexo Braquial/imunologia , Plexo Braquial/lesões , Plexo Braquial/patologia , Neuropatias do Plexo Braquial/etiologia , Citocinas/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Neurônios Motores/patologia , Neuroglia/metabolismo , Radiculopatia/complicações
9.
J Surg Educ ; 77(5): 1113-1120, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32446769

RESUMO

BACKGROUND: Anatomy is fundamental to the practice of medicine and surgery. Anatomy is also increasingly being taught by basic medical scientists or postclinical practice surgeons, thereby potentially detaching it from ongoing clinical realities. OBJECTIVE: To evaluate whether supplementing regional anatomy teaching using surgeons enhances medical students' mastery of anatomical knowledge and how it impacts their choice of a future career. DESIGN: This was a descriptive study. SETTING: An integrated tuition model in which basic regional anatomy was supplemented with clinical correlates taught by surgeons was devised and implemented at Jinan University Medical School. PARTICIPANTS: Soon after the third-year medical students finished dissecting each region (e.g., head and neck, limbs, etc.) of the human body, the surgeons from relevant specialties and sub-specialties were invited to give clinical application lectures. A self-administered questionnaire was used to evaluate all the students' perceptions of the integrated teaching model, perceived mastery of anatomical knowledge and determinants of future career choice. RESULTS: More than half of the students believe that regional anatomy is more closely related to surgery than systemic anatomy. Over 70% of the students have a positive attitude towards this teaching model where surgeons supplement regional anatomy with clinical correlates, and 98% of the students are in favor of integrating human body structural knowledge into clinical problems to learn anatomy. In addition, 78% of the students believe that the surgeons' participation in the teaching of regional anatomy helps them better understand human body structures and their clinical significance. However, some of their responses point towards the clinical correlate disconnection from the basic anatomy content. Furthermore, the majority of the students plan to become clinical doctors. After studying regional anatomy, the proportion of students who elected to be surgeons decreased slightly. However, the number of students who affirmatively planned to become surgeons in the future increased slightly, and 90% of these students were able to specify a chosen and preferred subspecialty of surgery. CONCLUSIONS: Surgeons' involvement in regional anatomy is of major benefit to students in understanding the human anatomy and its clinical significance, as well as positively impact on the decision to pursue a career in surgery.


Assuntos
Anatomia , Educação de Graduação em Medicina , Estudantes de Medicina , Cirurgiões , Anatomia/educação , Anatomia Regional , Escolha da Profissão , Humanos , Inquéritos e Questionários
10.
Stem Cell Res Ther ; 11(1): 153, 2020 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-32272974

RESUMO

BACKGROUND: To date, it has repeatedly been demonstrated that infusing bone marrow-derived stem cells (BMSCs) into acellular nerve scaffolds can promote and support axon regeneration through a peripheral nerve defect. However, harvesting BMSCs is an invasive and painful process fraught with a low cellular yield. METHODS: In pursuit of alternative stem cell sources, we isolated stem cells from the inguinal subcutaneous adipose tissue of adult Sprague-Dawley rats (adipose-derived stem cells, ADSCs). We used a co-culture system that allows isolated adult mesenchymal stem cells (MSCs) and Schwann cells (SCs) to grow in the same culture medium but without direct cellular contact. We verified SC phenotype in vitro by cell marker analysis and used red fluorescent protein-tagged ADSCs to detect their fate after being injected into a chemically extracted acellular nerve allograft (CEANA). To compare the regenerative effects of CEANA containing either BMSCs or ADSCs with an autograft and CEANA only on the sciatic nerve defect in vivo, we performed histological and functional assessments up to 16 weeks after grafting. RESULTS: In vitro, we observed reciprocal beneficial effects of ADSCs and SCs in the ADSC-SC co-culture system. Moreover, ADSCs were able to survive in CEANA for 5 days after in vitro implantation. Sixteen weeks after grafting, all results consistently showed that CEANA infused with BMSCs or ADSCs enhanced injured sciatic nerve repair compared to the acellular CEANA-only treatment. Furthermore, their beneficial effects on sciatic injury regeneration were comparable as histological and functional parameters evaluated showed no statistically significant differences. However, the autograft group was roundly superior to both the BMSC- or ADSC-loaded CEANA groups. CONCLUSION: The results of the present study show that ADSCs are a viable alternative stem cell source for treating sciatic nerve injury in lieu of BMSCs.


Assuntos
Axônios , Regeneração Nervosa , Tecido Adiposo , Animais , Medula Óssea , Células Cultivadas , Ratos , Ratos Sprague-Dawley , Nervo Isquiático , Células-Tronco
11.
Exp Ther Med ; 19(1): 205-213, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-31853291

RESUMO

Estrogen-related receptor γ (ERRγ) is a member of a small group of orphan nuclear receptor transcription factors that have been implicated in several physiological and pathological processes, including placental development, regulation of metabolic genes or disease. The pattern of expression of ERRγ, its role in neuronal injury and its co-localization with other transcription factors in the spinal cord of rats with brachial plexus injury has not been determined. The expression profile of ERRγ and its co-localization with RNA binding protein fox-1 homolog 3 (NeuN) or cyclic AMP-dependent transcription factor 3 (ATF-3) in the motor neurons of rats that underwent brachial plexus root avulsion were assessed using western blot analysis, immunohistochemistry and immunofluorescence. Fluorogold (FG) was used to mark neurons whose axons were severed. ATF-3 was expressed in the nuclei of motor neurons whose axons were severed by root avulsion. On day 3 post-avulsion, FG and ATF-3 were all co-localized in the injured motor neurons. The level of ERRγ protein in the ipsilateral half of injured spinal cords was significantly decreased compared with that in the contralateral half on days 3, 14 and 28 post-avulsion (all P<0.05). The numbers of ERRγ-positive motor neurons (ERRγon) were also notably decreased in the ipsilateral side compared with that in the contralateral side on days 14 and 28 post-avulsion, implying that the expression occurred in α motor neurons that were progressively being lost, a phenomenon that was expected post-brachial plexus avulsion. Almost all large and small ERRγ-positive motor neurons were also NeuN-positive (NeuNon). However, a few of these were ERRγon/NeuNoff (no NeuN signal). Therefore, these results suggested that ERRγ is a non-specific marker of γ motor neurons in rats, and therefore, this specific transcriptional program cannot be used to define functionally distinct motor neuron sub-populations. However, its downregulation on the injured side suggests that it is an important component of the response to injury in motor neurons.

12.
Neurochem Int ; 132: 104611, 2020 01.
Artigo em Inglês | MEDLINE | ID: mdl-31783066

RESUMO

The neuronal mechanisms underlying brachial plexus roots avulsion-induced motoneuron death are unknown. Our previous studies showed that the avulsion induced obvious temporal and spatial expression of both degenerative and regenerative genes in the injured spinal cord tissue. Therefore, we hypothesized that lncRNAs (responsible for epigenetic molecular mechanisms) are altered (resulting in altered gene expression patterns) at days 3 and 14 after avulsion. In the present microarray study, 121 lncRNAs (83 up/38 down) and 844 mRNAs (726 up/118 down) were differentially expressed (ipsilateral vs contralateral) after avulsion. We further used qRT-PCR as a validation tool to confirm the expression patterns of 5 lncRNAs and 5 mRNAs randomly selected from our microarray analysis data. The gene ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses were performed to identify the critical biological processes and pathways. The noted downregulation of the AF128540 (which targets the nNOS gene) is consistent with the high expression of nNOS protein observed at day 14 post-avulsion. The downregulation of MRAK034299, whose target is the Adra1d gene, is consistent with the downregulation of Adra1d mRNA and protein at days 3 and 14 post avulsion. Immunofluorescence evaluation showed cytoplasmic translocation of ECEL1 after avulsion injury. Moreover, we also found that IL6 and Rac2 are the core genes at days 3 and 14 after unilateral brachial plexus roots avulsion, respectively. Overall, our present data suggest that the altered LncRNAs (avulsion-induced), via unknown epigenetic mechanisms, certainly contribute to the molecular mechanism underpinning motoneuron death or survival. Therefore, the avulsion-induced differentially expressed lncRNAs and mRNAs may offer potential diagnostic and therapeutic targets for BPRA.


Assuntos
Plexo Braquial/metabolismo , Neurônios Motores/metabolismo , RNA Longo não Codificante/biossíntese , RNA Mensageiro/biossíntese , Radiculopatia/metabolismo , Traumatismos da Medula Espinal/metabolismo , Animais , Expressão Gênica , Masculino , Domínios e Motivos de Interação entre Proteínas/fisiologia , RNA Longo não Codificante/genética , RNA Mensageiro/genética , Radiculopatia/genética , Ratos , Ratos Sprague-Dawley , Traumatismos da Medula Espinal/genética , Fatores de Tempo
13.
J Mol Neurosci ; 65(3): 400-410, 2018 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-29992498

RESUMO

Brachial plexus injury is a common clinical peripheral nerve trauma. A series of genes in motoneurons were activated in the corresponding segments of the spinal cord after brachial plexus roots axotomy. The spatial and temporal expression of these genes directly affects the speed of motoneuron axon regeneration and precise target organ reinnervation. In a previous study, we observed the overexpression of c-Jun in motoneurons of the spinal cord ventral horn after brachial plexus injury in rats. However, the relevance of c-Jun expression with respect to the fate of axotomy-induced branchial plexus injury in adult mice remains unknown. In the present study, we explored the function of c-Jun in motoneuron recovery after axotomy. We pre-injected small interfering RNA (siRNA) to knockdown c-Jun expression in mice and examined the effects of the overexpression of c-Jun in motoneurons after the axotomy of the brachial plexus in vivo. Axotomy induced c-Jun overexpression in the ventral horn motoneurons of adult mice from 3 to 14 days after injury. In addition, the pre-injection of siRNA transiently inhibited c-Jun expression and decreased the survival rate of axotomy-injured motoneurons. These findings indicate that the axotomy-induced overexpression of c-Jun plays an important role in the survival of ventral horn motoneurons in adult mice. In addition, the pre-injection of c-Jun siRNA through the brachial plexus stem effectively adjusts c-Jun gene expression at the ipsilateral side.


Assuntos
Traumatismos do Nervo Acessório/terapia , Proteínas Quinases JNK Ativadas por Mitógeno/genética , Neurônios Motores/metabolismo , Terapêutica com RNAi/métodos , Animais , Plexo Braquial/lesões , Plexo Braquial/metabolismo , Inativação Gênica , Proteínas Quinases JNK Ativadas por Mitógeno/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Neurônios Motores/fisiologia , Corno Ventral da Medula Espinal/citologia , Corno Ventral da Medula Espinal/metabolismo , Corno Ventral da Medula Espinal/fisiologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA