Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
1.
Microbes Infect ; 26(1-2): 105216, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37827275

RESUMO

The analyses of genetic traits, dispersion patterns and phylogenomics are essential for understanding the evolutionary forces driving SARS-CoV-2 viruses in these three years of COVID-19 pandemics. Brazil is one of the most affected countries in the world and not sufficient genomic studies have been performed. The emergence of P.1 lineage led to one of the most serious public health crises on record. Our study presents the genomic sequencing and characterization of 412 samples from Rio Grande do Sul state, in the Brazilian Southern region, during Gamma and Delta epidemic waves, in 2021. Additionally, molecular evolution tests were performed to identify positively selected sites in Brazil between 2020 and 2022, as well as offer some evolutionary perspective about the maintenance of multiple spike mutations in Omicron lineages. Genomic epidemiology analysis has indicated an intense P.1 (Gamma) diversification followed by rapid Delta substitution in Southern Brazil.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , SARS-CoV-2/genética , Brasil/epidemiologia , COVID-19/epidemiologia , Genômica , Saúde Pública , Filogenia
2.
J Biomol Struct Dyn ; 41(7): 3110-3128, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-35594172

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has reached by February 2022 more than 380 million cases and 5.5 million deaths worldwide since its beginning in late 2019, leading to enhanced concern in the scientific community and the general population. One of the most important pieces of this host-pathogen interaction is the spike protein, which binds to the hACE2 cell receptor, mediates the membrane fusion and is the major target of neutralizing antibodies against SARS-CoV-2. The multiple amino acid substitutions observed in this region, specially in RBD have enhanced the hACE2 binding affinity and led to several modifications in the mechanisms of SARS-CoV-2 pathogenesis, improving the viral fitness and/or promoting immune evasion, with potential impact in the vaccine development. In this work, we identified 48 sites under selective pressures, 17 of them with the strongest evidence by the HyPhy tests, including VOC related mutation sites 138, 142, 222, 262, 484, 681, and 845, among others. The coevolutionary analysis identified 28 sites found not to be conditionally independent, such as E484K-N501Y. The molecular dynamics and free energy estimates showed the structural stabilizing effect and the higher impact of E484K for enhanced binding affinity between the spike RBD and hACE2 in P.1 and P.2 lineages (specially with L452V). Structural changes were also identified in the hACE molecule when interacting with B.1.1.7 RDB. Despite some destabilizing substitutions, a stabilizing effect was identified for the majority of the positively selected mutations.Communicated by Ramaswamy H. Sarma.


Assuntos
COVID-19 , SARS-CoV-2 , Humanos , Glicoproteína da Espícula de Coronavírus , Brasil , Pandemias , Evolução Molecular , Mutação , Glicoproteínas
3.
Front Med (Lausanne) ; 9: 806611, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35242782

RESUMO

BACKGROUND: P.1 lineage (Gamma) was first described in the State of Amazonas, northern Brazil, in the end of 2020, and has emerged as a very important variant of concern (VOC) of SARS-CoV-2 worldwide. P.1 has been linked to increased infectivity, higher mortality, and immune evasion, leading to reinfections and potentially reduced efficacy of vaccines and neutralizing antibodies. METHODS: The samples of 276 patients from the State of Amazonas were sent to a central referral laboratory for sequencing by gold standard techniques, through Illumina MiSeq platform. Both global and regional phylogenetic analyses of the successfully sequenced genomes were conducted through maximum likelihood method. Multiple alignments were obtained including previously obtained unique human SARS-CoV-2 sequences. The evolutionary histories of spike and non-structural proteins from ORF1a of northern genomes were described and their molecular evolution was analyzed for detection of positive (FUBAR, FEL, and MEME) and negative (FEL and SLAC) selective pressures. To further evaluate the possible pathways of evolution leading to the emergence of P.1, we performed specific analysis for copy-choice recombination events. A global phylogenomic analysis with subsampled P.1 and B.1.1.28 genomes was applied to evaluate the relationship among samples. RESULTS: Forty-four samples from the State of Amazonas were successfully sequenced and confirmed as P.1 (Gamma) lineage. In addition to previously described P.1 characteristic mutations, we find evidence of continuous diversification of SARS-CoV-2, as rare and previously unseen P.1 mutations were detected in spike and non-structural protein from ORF1a. No evidence of recombination was found. Several sites were demonstrated to be under positive and negative selection, with various mutations identified mostly in P.1 lineage. According to the Pango assignment, phylogenomic analyses indicate all samples as belonging to the P.1 lineage. CONCLUSION: P.1 has shown continuous evolution after its emergence. The lack of clear evidence for recombination and the positive selection demonstrated for several sites suggest that this lineage emergence resulted mainly from strong evolutionary forces and progressive accumulation of a favorable signature set of mutations.

4.
Pathogens ; 10(8)2021 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-34451453

RESUMO

Almost a year after the COVID-19 pandemic had begun, new lineages (B.1.1.7, B.1.351, P.1, and B.1.617.2) associated with enhanced transmissibility, immunity evasion, and mortality were identified in the United Kingdom, South Africa, and Brazil. The previous most prevalent lineages in the state of Rio Grande do Sul (RS, Southern Brazil), B.1.1.28 and B.1.1.33, were rapidly replaced by P.1 and P.2, two B.1.1.28-derived lineages harboring the E484K mutation. To perform a genomic characterization from the metropolitan region of Porto Alegre, we sequenced viral samples to: (i) identify the prevalence of SARS-CoV-2 lineages in the region, the state, and bordering countries/regions; (ii) characterize the mutation spectra; (iii) hypothesize viral dispersal routes by using phylogenetic and phylogeographic approaches. We found that 96.4% of the samples belonged to the P.1 lineage and approximately 20% of them were assigned as the novel P.1.2, a P.1-derived sublineage harboring signature substitutions recently described in other Brazilian states and foreign countries. Moreover, sequences from this study were allocated in distinct branches of the P.1 phylogeny, suggesting multiple introductions in RS and placing this state as a potential diffusion core of P.1-derived clades and the emergence of P.1.2. It is uncertain whether the emergence of P.1.2 and other P.1 clades is related to clinical or epidemiological consequences. However, the clear signs of molecular diversity from the recently introduced P.1 warrant further genomic surveillance.

5.
Front Med (Lausanne) ; 8: 668698, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34350193

RESUMO

Antiandrogens have demonstrated a protective effect for COVOD-19 patients in observational and interventional studies. The goal of this study was to determine if proxalutamide, an androgen receptor antagonist, could be an effective treatment for men with COVID-19 in an outpatient setting. A randomized, double-blinded, placebo-controlled clinical trial was conducted at two outpatient centers (Brasilia, Brazil). Patients were recruited from October 21 to December 24, 2020 (clinicaltrials.gov number, NCT04446429). Male patients with confirmed COVID-19 but not requiring hospitalization (COVID-19 8-point ordinal scale <3) were administered proxalutamide 200 mg/day or placebo for up to 7 days. The primary endpoint was hospitalization rate at 30 days post-randomization. A total of 268 men were randomized in a 1:1 ratio. 134 patients receiving proxalutamide and 134 receiving placebo were included in the intention-to-treat analysis. The 30-day hospitalization rate was 2.2% in men taking proxalutamide compared to 26% in placebo, P < 0.001. The 30-day hospitalization risk ratio was 0.09; 95% confidence interval (CI) 0.03-0.27. Patients in the proxalutamide arm more frequently reported gastrointestinal adverse events, however, no patient discontinued treatment. In placebo group, 6 patients were lost during follow-up, and 2 patients died from acute respiratory distress syndrome. Here we demonstrate the hospitalization rate in proxalutamide treated men was reduced by 91% compared to usual care.

6.
Virus Res ; 304: 198532, 2021 10 15.
Artigo em Inglês | MEDLINE | ID: mdl-34363852

RESUMO

The COVID-19 pandemic has already reached more than 110 million people and is associated with 2.5 million deaths worldwide. Brazil is the third worst-hit country, with approximately 10.2 million cases and 250 thousand deaths. International efforts have been established to share information about Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) epidemiology and evolution to support the development of effective strategies for public health and disease management. We aimed to analyze the high-quality genome sequences from Brazil from February 2020-2021 to identify mutation hotspots, geographical and temporal distribution of SARS-CoV-2 lineages by using phylogenetics and phylodynamics analyses. We describe heterogeneous sequencing efforts, the progression of the different lineages along time, evaluating mutational spectra and frequency oscillations derived from the prevalence of specific lineages across different Brazilian regions. We found at least seven major (1-7) and two minor clades related to the six most prevalent lineages in the country and described its spatial distribution and dynamics. The emergence and recent frequency shift of lineages (P.1 and P.2) carrying mutations of concern in the spike protein (e. g., E484K, N501Y) draws attention due to their association with immune evasion and enhanced receptor binding affinity. Improvements in genomic surveillance are of paramount importance and should be extended in Brazil to better inform policy makers about better decisions to fight the COVID-19 pandemic.


Assuntos
COVID-19 , Pandemias , Filogenia , SARS-CoV-2 , Brasil/epidemiologia , COVID-19/epidemiologia , COVID-19/virologia , Genoma Viral , Humanos , Mutação , SARS-CoV-2/classificação , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética
7.
Infect Genet Evol ; 93: 104941, 2021 09.
Artigo em Inglês | MEDLINE | ID: mdl-34044192

RESUMO

The COVID-19 pandemic caused by SARS-CoV-2 has affected millions of people since its beginning in 2019. The propagation of new lineages and the discovery of key mechanisms adopted by the virus to overlap the immune system are central topics for the entire public health policies, research and disease management. Since the second semester of 2020, the mutation E484K has been progressively found in the Brazilian territory, composing different lineages over time. It brought multiple concerns related to the risk of reinfection and the effectiveness of new preventive and treatment strategies due to the possibility of escaping from neutralizing antibodies. To better characterize the current scenario we performed genomic and phylogenetic analyses of the E484K mutated genomes sequenced from Brazilian samples in 2020. From October 2020, more than 40% of the sequenced genomes present the E484K mutation, which was identified in three different lineages (P.1, P.2 and B.1.1.33 - posteriorly renamed as N.9) in four Brazilian regions. We also evaluated the presence of E484K associated mutations and identified selective pressures acting on the spike protein, leading us to some insights about adaptive and purifying selection driving the virus evolution.


Assuntos
Mutação , Filogenia , SARS-CoV-2/genética , Glicoproteína da Espícula de Coronavírus/genética , Brasil , COVID-19/virologia , Evolução Molecular , Genômica , Humanos , SARS-CoV-2/isolamento & purificação , Seleção Genética
8.
BMC Genomics ; 22(1): 371, 2021 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-34016042

RESUMO

BACKGROUND: Brazil is the third country most affected by Coronavirus disease-2019 (COVID-19), but viral evolution in municipality resolution is still poorly understood in Brazil and it is crucial to understand the epidemiology of viral spread. We aimed to track molecular evolution and spread of Severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) in Esteio (Southern Brazil) using phylogenetics and phylodynamics inferences from 21 new genomes in global and regional context. Importantly, the case fatality rate (CFR) in Esteio (3.26%) is slightly higher compared to the Rio Grande do Sul (RS) state (2.56%) and the entire Brazil (2.74%). RESULTS: We provided a comprehensive view of mutations from a representative sampling from May to October 2020, highlighting two frequent mutations in spike glycoprotein (D614G and V1176F), an emergent mutation (E484K) in spike Receptor Binding Domain (RBD) characteristic of the B.1.351 and P.1 lineages, and the adjacent replacement of 2 amino acids in Nucleocapsid phosphoprotein (R203K and G204R). E484K was found in two genomes from mid-October, which is the earliest description of this mutation in Southern Brazil. Lineages containing this substitution must be subject of intense surveillance due to its association with immune evasion. We also found two epidemiologically-related clusters, including one from patients of the same neighborhood. Phylogenetics and phylodynamics analysis demonstrates multiple introductions of the Brazilian most prevalent lineages (B.1.1.33 and B.1.1.248) and the establishment of Brazilian lineages ignited from the Southeast to other Brazilian regions. CONCLUSIONS: Our data show the value of correlating clinical, epidemiological and genomic information for the understanding of viral evolution and its spatial distribution over time. This is of paramount importance to better inform policy making strategies to fight COVID-19.


Assuntos
COVID-19 , SARS-CoV-2 , Brasil/epidemiologia , Genoma Viral , Genômica , Humanos
9.
Brasília-DF; Ministério da Saúde; 2010. 11 p.
Monografia em Português | LILACS, Coleciona SUS | ID: biblio-937724
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA