Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 51
Filtrar
1.
Front Vet Sci ; 11: 1396714, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38962707

RESUMO

Introduction: Coxiella burnetii (C. burnetii)-infected livestock and wildlife have been epidemiologically linked to human Q fever outbreaks. Despite this growing zoonotic threat, knowledge of coxiellosis in wild animals remains limited, and studies to understand their epidemiologic role are needed. In C. burnetii-endemic areas, ticks have been reported to harbor and spread C. burnetii and may serve as indicators of risk of infection in wild animal habitats. Therefore, the aim of this study was to compare molecular techniques for detecting C. burnetii DNA in ticks. Methods: In total, 169 ticks from wild animals and cattle in wildlife conservancies in northern Kenya were screened for C. burnetii DNA using a conventional PCR (cPCR) and two field-friendly techniques: Biomeme's C. burnetii qPCR Go-strips (Biomeme) and a new C. burnetii PCR high-resolution melt (PCR-HRM) analysis assay. Results were evaluated, in the absence of a gold standard test, using Bayesian latent class analysis (BLCA) to characterize the proportion of C. burnetii positive ticks and estimate sensitivity (Se) and specificity (Sp) of the three tests. Results: The final BLCA model included main effects and estimated that PCR-HRM had the highest Se (86%; 95% credible interval: 56-99%), followed by the Biomeme (Se = 57%; 95% credible interval: 34-90%), with the estimated Se of the cPCR being the lowest (24%, 95% credible interval: 10-47%). Specificity estimates for all three assays ranged from 94 to 98%. Based on the model, an estimated 16% of ticks had C. burnetii DNA present. Discussion: These results reflect the endemicity of C. burnetii in northern Kenya and show the promise of the PCR-HRM assay for C. burnetii surveillance in ticks. Further studies using ticks and wild animal samples will enhance understanding of the epidemiological role of ticks in Q fever.

2.
Zoonoses Public Health ; 71(5): 503-514, 2024 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-38627945

RESUMO

AIMS: Q fever is a globally distributed, neglected zoonotic disease of conservation and public health importance, caused by the bacterium Coxiella burnetii. Coxiella burnetii normally causes subclinical infections in livestock, but may also cause reproductive pathology and spontaneous abortions in artiodactyl species. One such artiodactyl, the dromedary camel (Camelus dromedarius), is an increasingly important livestock species in semi-arid landscapes. Ticks are naturally infected with C. burnetii worldwide and are frequently found on camels in Kenya. In this study, we assessed the relationship between dromedary camels' C. burnetii serostatus and whether the camels were carrying C. burnetii PCR-positive ticks in Kenya. We hypothesized that there would be a positive association between camel seropositivity and carrying C. burnetii PCR-positive ticks. METHODS AND RESULTS: Blood was collected from camels (N = 233) from three herds, and serum was analysed using commercial ELISA antibody test kits. Ticks were collected (N = 4354), divided into pools of the same species from the same camel (N = 397) and tested for C. burnetii and Coxiella-like endosymbionts. Descriptive statistics were used to summarize seroprevalence by camel demographic and clinical variables. Univariate logistic regression analyses were used to assess relationships between serostatus (outcome) and tick PCR status, camel demographic variables, and camel clinical variables (predictors). Camel C. burnetii seroprevalence was 52%. Across tick pools, the prevalence of C. burnetii was 15% and Coxiella-like endosymbionts was 27%. Camel seropositivity was significantly associated with the presence of a C. burnetii PCR-positive tick pool (OR: 2.58; 95% CI: 1.4-5.1; p = 0.0045), increasing age class, and increasing total solids. CONCLUSIONS: The role of ticks and camels in the epidemiology of Q fever warrants further research to better understand this zoonotic disease that has potential to cause illness and reproductive losses in humans, livestock, and wildlife.


Assuntos
Camelus , Coxiella burnetii , Febre Q , Animais , Camelus/microbiologia , Coxiella burnetii/isolamento & purificação , Coxiella burnetii/genética , Febre Q/epidemiologia , Febre Q/veterinária , Febre Q/microbiologia , Quênia/epidemiologia , Masculino , Estudos Soroepidemiológicos , Feminino , DNA Bacteriano , Carrapatos/microbiologia , Infestações por Carrapato/veterinária , Infestações por Carrapato/epidemiologia
3.
Parasit Vectors ; 17(1): 84, 2024 Feb 22.
Artigo em Inglês | MEDLINE | ID: mdl-38389097

RESUMO

BACKGROUND: Surveillance data documenting tick and tick-borne disease (TBD) prevalence is needed to develop risk assessments and implement control strategies. Despite extensive research in Africa, there is no standardized, comprehensive review. METHODS: Here we tackle this knowledge gap, by producing a comprehensive review of research articles on ticks and TBD between 1901 and 2020 in Chad, Djibouti, Ethiopia, Kenya, Tanzania, and Uganda. Over 8356 English language articles were recovered. Our search strategy included 19 related MeSH terms. Articles were reviewed, and 331 met inclusion criteria. Articles containing mappable data were compiled into a standardized data schema, georeferenced, and uploaded to VectorMap. RESULTS: Tick and pathogen matrixes were created, providing information on vector distributions and tick-pathogen associations within the six selected African countries. CONCLUSIONS: These results provide a digital, mappable database of current and historical tick and TBD distributions across six countries in Africa, which can inform specific risk modeling, determine surveillance gaps, and guide future surveillance priorities.


Assuntos
Doenças Transmitidas por Carrapatos , Carrapatos , Animais , Etiópia , Quênia , Tanzânia , Doenças Transmitidas por Carrapatos/epidemiologia , África Subsaariana
5.
J Zoo Wildl Med ; 54(2): 379-386, 2023 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-37428703

RESUMO

Air sac trematodes (Digenea: Cyclocoelidae) were detected in 23 avian species from eight aviaries in the United States. Most of the infected host species were passeriform birds, but a few species in other orders also were infected. Four species of adult flukes were encountered: Circumvitellatrema momota, Morishitium sp., Psophiatrema greineri, and Szidatitrema yamagutii. Findings from retrospective review of medical records, necropsy records, and author observations are presented. Potential terrestrial snail intermediate hosts were collected from three indoor aviaries. A high prevalence (47%) of larval trematode infections was demonstrated in one species of nonnative snail (Prosopeas achatinacea); one larva was isolated and matched to the adult species (C. momota) from birds using PCR. Problems with introducing potentially infected wild-caught birds into aviaries, and exchanging captive individuals between aviaries where they potentially may carry infections, are discussed.


Assuntos
Trematódeos , Infecções por Trematódeos , Animais , Estados Unidos/epidemiologia , Sacos Aéreos , Infecções por Trematódeos/epidemiologia , Infecções por Trematódeos/veterinária , Aves , Larva , Caramujos
6.
Sci Rep ; 13(1): 5675, 2023 04 07.
Artigo em Inglês | MEDLINE | ID: mdl-37029156

RESUMO

Ebola virus is highly lethal for great apes. Estimated mortality rates up to 98% have reduced the global gorilla population by approximately one-third. As mountain gorillas (Gorilla beringei beringei) are endangered, with just over 1000 individuals remaining in the world, an outbreak could decimate the population. Simulation modeling was used to evaluate the potential impact of an Ebola virus outbreak on the mountain gorilla population of the Virunga Massif. Findings indicate that estimated contact rates among gorilla groups are high enough to allow rapid spread of Ebola, with less than 20% of the population projected to survive at 100 days post-infection of just one gorilla. Despite increasing survival with vaccination, no modeled vaccination strategy prevented widespread infection. However, the model projected that survival rates greater than 50% could be achieved by vaccinating at least half the habituated gorillas within 3 weeks of the first infectious individual.


Assuntos
Ebolavirus , Doença pelo Vírus Ebola , Hominidae , Humanos , Animais , Gorilla gorilla , Doença pelo Vírus Ebola/epidemiologia , Doença pelo Vírus Ebola/prevenção & controle , Doença pelo Vírus Ebola/veterinária , Surtos de Doenças/veterinária
8.
Viruses ; 14(12)2022 12 17.
Artigo em Inglês | MEDLINE | ID: mdl-36560824

RESUMO

BACKGROUND AND METHODS: To investigate virus diversity in hot zones of probable pathogen spillover, 54 oral-fecal swabs were processed from five bat species collected from three cave systems in Kenya, using metagenome sequencing. RESULTS: Viruses belonging to the Astroviridae, Circoviridae, Coronaviridae, Dicistroviridae, Herpesviridae and Retroviridae were detected, with unclassified viruses. Retroviral sequences were prevalent; 74.1% of all samples were positive, with distinct correlations between virus, site and host bat species. Detected retroviruses comprised Myotis myotis, Myotis ricketti, Myotis daubentonii and Galidia endogenous retroviruses, murine leukemia virus-related virus and Rhinolophus ferrumequinum retrovirus (RFRV). A near-complete genome of a local RFRV strain with identical genome organization and 2.8% nucleotide divergence from the prototype isolate was characterized. Bat coronavirus sequences were detected with a prevalence of 24.1%, where analyses on the ORF1ab region revealed a novel alphacoronavirus lineage. Astrovirus sequences were detected in 25.9%of all samples, with considerable diversity. In 9.2% of the samples, other viruses including Actinidia yellowing virus 2, bat betaherpesvirus, Bole tick virus 4, Cyclovirus and Rhopalosiphum padi virus were identified. CONCLUSIONS: Further monitoring of bats across Kenya is essential to facilitate early recognition of possibly emergent zoonotic viruses.


Assuntos
Alphacoronavirus , Astroviridae , COVID-19 , Quirópteros , Herpesviridae , Vírus de RNA , Animais , Astroviridae/genética , Quênia/epidemiologia , Filogenia , Retroviridae , Vírus de RNA/genética , SARS-CoV-2
9.
Animals (Basel) ; 12(19)2022 Oct 08.
Artigo em Inglês | MEDLINE | ID: mdl-36230446

RESUMO

Physiological data can provide valuable information about the health and welfare of animals. Unfortunately, few validated assays and a lack of information on species-typical levels of circulating biomarkers for wildlife make the measurement, interpretation, and practical application of such data difficult. We validated commercially available kits and calculated reference intervals (herein called "value ranges") for dehydroepiandrosterone-sulfate (DHEA-S), interleukin-6 (IL-6), and tumor necrosis factor-alpha (TNF-α) in a sample of zoo-housed western lowland gorillas due to the roles these biomarkers play in stress and immune responses. For each biomarker, we present species-specific value ranges for a sample of gorillas in human care (n = 57). DHEA-S did not vary significantly by sex or age, while IL-6 was higher in males and older gorillas and TNF-α was higher in females but not associated with age. We also compared non-clinical with clinical samples (n = 21) to explore whether these biomarkers reflect changes in health status. There was no significant difference between clinical and non-clinical samples for DHEA-S, but both IL-6 and TNF-α were significantly higher in gorillas showing clinical symptoms or prior to death. Additional work is needed to improve our understanding of normal versus clinical variation in these biomarkers, and we encourage continued efforts to identify and validate additional biomarkers that can be used to inform assessments of health and welfare in wildlife.

10.
Commun Biol ; 5(1): 844, 2022 08 19.
Artigo em Inglês | MEDLINE | ID: mdl-35986178

RESUMO

Host-virus associations have co-evolved under ecological and evolutionary selection pressures that shape cross-species transmission and spillover to humans. Observed virus-host associations provide relevant context for newly discovered wildlife viruses to assess knowledge gaps in host-range and estimate pathways for potential human infection. Using models to predict virus-host networks, we predicted the likelihood of humans as hosts for 513 newly discovered viruses detected by large-scale wildlife surveillance at high-risk animal-human interfaces in Africa, Asia, and Latin America. Predictions indicated that novel coronaviruses are likely to infect a greater number of host species than viruses from other families. Our models further characterize novel viruses through prioritization scores and directly inform surveillance targets to identify host ranges for newly discovered viruses.


Assuntos
Vírus , Zoonoses , África , Animais , Animais Selvagens , Especificidade de Hospedeiro , Humanos , Zoonoses/epidemiologia
11.
Front Microbiol ; 13: 932224, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35847110

RESUMO

Focusing on the utility of ticks as xenosurveillance sentinels to expose circulating pathogens in Kenyan drylands, host-feeding ticks collected from wild ungulates [buffaloes, elephants, giraffes, hartebeest, impala, rhinoceros (black and white), zebras (Grévy's and plains)], carnivores (leopards, lions, spotted hyenas, wild dogs), as well as regular domestic and Boran cattle were screened for pathogens using metagenomics. A total of 75 host-feeding ticks [Rhipicephalus (97.3%) and Amblyomma (2.7%)] collected from 15 vertebrate taxa were sequenced in 46 pools. Fifty-six pathogenic bacterial species were detected in 35 pools analyzed for pathogens and relative abundances of major phyla. The most frequently observed species was Escherichia coli (62.8%), followed by Proteus mirabilis (48.5%) and Coxiella burnetii (45.7%). Francisella tularemia and Jingmen tick virus (JMTV) were detected in 14.2 and 13% of the pools, respectively, in ticks collected from wild animals and cattle. This is one of the first reports of JMTV in Kenya, and phylogenetic reconstruction revealed significant divergence from previously known isolates and related viruses. Eight fungal species with human pathogenicity were detected in 5 pools (10.8%). The vector-borne filarial pathogens (Brugia malayi, Dirofilaria immitis, Loa loa), protozoa (Plasmodium spp., Trypanosoma cruzi), and environmental and water-/food-borne pathogens (Entamoeba histolytica, Encephalitozoon intestinalis, Naegleria fowleri, Schistosoma spp., Toxoplasma gondii, and Trichinella spiralis) were detected. Documented viruses included human mastadenovirus C, Epstein-Barr virus and bovine herpesvirus 5, Trinbago virus, and Guarapuava tymovirus-like virus 1. Our findings confirmed that host-feeding ticks are an efficient sentinel for xenosurveillance and demonstrate clear potential for wildlife-livestock-human pathogen transfer in the Kenyan landscape.

12.
PNAS Nexus ; 1(2): pgac044, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35668878

RESUMO

Across the tree of life, female animals share biological characteristics that place them at risk for similar diseases and disorders. Greater awareness of these shared vulnerabilities can accelerate insight and innovation in women's health. We present a broadly comparative approach to female health that can inform issues ranging from mammary, ovarian, and endometrial cancer to preeclampsia, osteoporosis, and infertility. Our focus on female health highlights the interdependence of human, animal, and environmental health. As the boundaries between human and animal environments become blurred, female animals across species are exposed to increasingly similar environmental hazards. As such, the health of female animals has unprecedented relevance to the field of woman's health. Expanding surveillance of animal populations beyond zoonoses to include noncommunicable diseases can strengthen women's health prevention efforts as environmental factors are increasingly implicated in human mortality. The physiology of nonhuman females can also spark innovation in women's health. There is growing interest in those species of which the females appear to have a level of resistance to pathologies that claim millions of human lives every year. These physiologic adaptations highlight the importance of biodiversity to human health. Insights at the intersection of women's health and planetary health can be a rich source of innovations benefitting the health of all animals across the tree of life.

13.
Am J Primatol ; 84(4-5): e23379, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35389523

RESUMO

Infectious diseases have the potential to extirpate populations of great apes. As the interface between humans and great apes expands, zoonoses pose an increasingly severe threat to already endangered great ape populations. Despite recognition of the threat posed by human pathogens to great apes, health monitoring is only conducted for a small fraction of the world's wild great apes (and mostly those that are habituated) meaning that outbreaks of disease often go unrecognized and therefore unmitigated. This lack of surveillance (even in sites where capacity to conduct surveillance is present) is the most significant limiting factor in our ability to quickly detect and respond to emerging infectious diseases in great apes when they first appear. Accordingly, we must create a surveillance system that links disease outbreaks in humans and great apes in time and space, and enables veterinarians, clinicians, conservation managers, national decision makers, and the global health community to respond quickly to these events. Here, we review existing great ape health surveillance programs in African range habitats to identify successes, gaps, and challenges. We use these findings to argue that standardization of surveillance across sites and geographic scales, that monitors primate health in real-time and generates early warnings of disease outbreaks, is an efficient, low-cost step to conserve great ape populations. Such a surveillance program, which we call "Great Ape Health Watch" would lead to long-term improvements in outbreak preparedness, prevention, detection, and response, while generating valuable data for epidemiological research and sustainable conservation planning. Standardized monitoring of great apes would also make it easier to integrate with human surveillance activities. This approach would empower local stakeholders to link wildlife and human health, allowing for near real-time, bidirectional surveillance at the great ape-human interface.


Assuntos
Doenças dos Símios Antropoides , Doenças Transmissíveis Emergentes , Hominidae , Animais , Animais Selvagens , Doenças dos Símios Antropoides/epidemiologia , Doenças dos Símios Antropoides/prevenção & controle , Doenças Transmissíveis Emergentes/epidemiologia , Doenças Transmissíveis Emergentes/prevenção & controle , Doenças Transmissíveis Emergentes/veterinária , Surtos de Doenças/prevenção & controle , Surtos de Doenças/veterinária , Zoonoses/epidemiologia , Zoonoses/prevenção & controle
14.
Lancet Glob Health ; 10(4): e579-e584, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35303467

RESUMO

The COVID-19 pandemic has underscored the need to strengthen national surveillance systems to protect a globally connected world. In low-income and middle-income countries, zoonotic disease surveillance has advanced considerably in the past two decades. However, surveillance efforts often prioritise urban and adjacent rural communities. Communities in remote rural areas have had far less support despite having routine exposure to zoonotic diseases due to frequent contact with domestic and wild animals, and restricted access to health care. Limited disease surveillance in remote rural areas is a crucial gap in global health security. Although this point has been made in the past, practical solutions on how to implement surveillance efficiently in these resource-limited and logistically challenging settings have yet to be discussed. We highlight why investing in disease surveillance in remote rural areas of low-income and middle-income countries will benefit the global community and review current approaches. Using semi-arid regions in Kenya as a case study, we provide a practical approach by which surveillance in remote rural areas can be strengthened and integrated into existing systems. This Viewpoint represents a transition from simply highlighting the need for a more holistic approach to disease surveillance to a solid plan for how this outcome might be achieved.


Assuntos
COVID-19 , Saúde Global , Países em Desenvolvimento , Humanos , Pandemias , Pobreza
15.
BMC Vet Res ; 17(1): 385, 2021 Dec 14.
Artigo em Inglês | MEDLINE | ID: mdl-34906141

RESUMO

BACKGROUND: Nonhuman primates (NHPs) play a significant role in zoonotic spill-overs, serving as either reservoirs, or amplifiers, of multiple neglected tropical diseases, including tick-borne infections. Anaplasma phagocytophilum are obligate intracellular bacteria of the family Anaplasmatacae, transmitted by Ixodid ticks and cause granulocytic anaplasmosis (formerly known as Human Granulocytic Ehrlichiosis (HGE)) in a wide range of wild and domestic mammals and humans too. The aim of this study was to determine whether Anaplasma phagocytophilum was circulating in olive baboons and vervet monkeys in Laikipia County, Kenya. RESULTS: Some 146 blood samples collected from olive baboons and 18 from vervet monkeys from Mpala Research Center and Ol jogi Conservancy in Laikipia County were screened for the presence of Anaplasma species using conventional Polymerase Chain Reaction (PCR), and then A. phagocytophilum was confirmed by sequencing using conventional PCR targeting 16S rRNA. This study found an overall prevalence of 18.3% for Anaplasma species. DNA sequences confirmed Anaplasma phagocytophilum in olive baboons for the first time in Kenya. CONCLUSION: This study provides valuable information on the endemicity of A. phagocytophilum bacteria in olive baboons in Kenya. Future research is needed to establish the prevalence and public health implications of zoonotic A. phagocytophilum isolates and the role of nonhuman primates as reservoirs in the region.


Assuntos
Anaplasma phagocytophilum , Chlorocebus aethiops , Ehrlichiose , Papio anubis , Anaplasma phagocytophilum/genética , Animais , Ehrlichiose/diagnóstico , Ehrlichiose/microbiologia , Ehrlichiose/veterinária , Quênia/epidemiologia , Doenças dos Primatas/diagnóstico , Doenças dos Primatas/microbiologia , RNA Ribossômico 16S/genética
17.
Prev Vet Med ; 193: 105345, 2021 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-34090722

RESUMO

BACKGROUND: Rodents are one of the major taxa most likely to carry zoonotic diseases, harboring more than 85 unique zoonotic pathogens. While the significance of rodents' capacity to carry and transmit disease has been characterized in urban settings, the zoo environment is particularly unique given the overlap of collection, free-living, and feeder rodents as well as non-rodent collection animals, staff, and visitors. ELIGIBILITY CRITERIA: This scoping review examines reports of rodent-borne pathogen detection or transmission in zoo settings extracted from the literature. Papers were included in the final analysis if there was evidence of presence or exposure to a pathogen in a rodent at a zoological institution. SOURCES OF EVIDENCE: Publications were included from PubMed, CAB Abstracts and Biological Abstracts searched in August 2019. CHARTING METHODS: Data extracted from publications on pathogen presence/exposure included publication identifiers, study identifiers, infectious agent identifiers, rodent identifiers, and non-rodent collection animal identifiers. Extraction from papers with evidence of disease transmission included number of rodents involved in transmission, non-rodent collection animal species and numbers, and job title of humans involved, diagnostic tests performed, and clinical outcomes. RESULTS: Aggregate literature examined included 207 publications presenting evidence of pathogen presence and/or exposure in rodents across 43 countries in over 140 zoological institutions. A total of 143 infectious agent genera were identified, comprising 14 viral genera, 31 bacterial genera, 83 parasitic genera, and 15 fungal genera. Of these infectious agents, over 75 % were potentially zoonotic. The most common disease-causing agent genera identified were Leptospira, Toxoplasma, Salmonella, and Yersinia. Additional screening for evidence of pathogen transmission across species yielded 30 publications, indicating an area for future investigation to better inform surveillance and management priorities in order to reduce exposure, infection, and transmission. CONCLUSIONS: Analyzing the breadth of rodent species and pathogens identified at zoos highlights the unique opportunity zoos have to be at the forefront of the early detection and identification of novel hosts and geographic ranges of rodent-borne pathogens with high impact on both endangered species and people. The overlap of these populations at zoos exemplifies the importance of considering One Health when prioritizing surveillance and risk mitigation of rodent reservoirs at zoos.


Assuntos
Doenças dos Roedores , Zoonoses , Animais , Animais de Zoológico , Bactérias , Vetores de Doenças , Leptospira , Doenças dos Roedores/epidemiologia , Doenças dos Roedores/transmissão , Roedores , Salmonella , Toxoplasma , Yersinia , Zoonoses/epidemiologia , Zoonoses/transmissão
19.
Nat Ecol Evol ; 5(7): 907-918, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-34002048

RESUMO

Increasingly intimate associations between human society and the natural environment are driving the emergence of novel pathogens, with devastating consequences for humans and animals alike. Prior to emergence, these pathogens exist within complex ecological systems that are characterized by trophic interactions between parasites, their hosts and the environment. Predicting how disturbance to these ecological systems places people and animals at risk from emerging pathogens-and the best ways to manage this-remains a significant challenge. Predictive systems ecology models are powerful tools for the reconstruction of ecosystem function but have yet to be considered for modelling infectious disease. Part of this stems from a mistaken tendency to forget about the role that pathogens play in structuring the abundance and interactions of the free-living species favoured by systems ecologists. Here, we explore how developing and applying these more complete systems ecology models at a landscape scale would greatly enhance our understanding of the reciprocal interactions between parasites, pathogens and the environment, placing zoonoses in an ecological context, while identifying key variables and simplifying assumptions that underly pathogen host switching and animal-to-human spillover risk. As well as transforming our understanding of disease ecology, this would also allow us to better direct resources in preparation for future pandemics.


Assuntos
Doenças Transmissíveis , Ecossistema , Animais , Humanos , Zoonoses
20.
J Zoo Wildl Med ; 52(1): 157-165, 2021 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-33827172

RESUMO

Takin (Budorcus taxicolor) are classified as "Vulnerable" on the International Union for the Conservation of Nature Red List. Thus, ex situ conservation efforts provide assurance populations for future survival of this species. The objective of this study was to identify common causes of morbidity and mortality in takin populations in human care. Twenty North American institutions that housed takin from 1997 to 2017 completed a survey requesting medical and husbandry data. Data were examined broadly, by sex and age groups. There were 206 morbidity events (male = 133; female = 73) submitted across 102 takin (male = 62; female = 40). The most common causes of morbidity were infectious or inflammatory diseases (50%; 104/206), degenerative diseases (22%; 46/206), and traumatic events (17%; 34/206). Necropsy reports were provided for 42 takin that died during the study period. The most common causes of mortality were infectious or inflammatory diseases (26%; 11/42), traumatic events (24%; 10/42), and degenerative disease (12%; 5/42). Sixty-two percent of infectious or inflammatory diseases causing morbidity were associated with endoparasites (64/104). Degenerative joint diseases more commonly affected males (78%; 36/46) as well as forelimbs (48%; 22/46) when compared to hindlimbs (30%; 14/46) and unspecified limbs (22%; 10/46). The prevalence of trauma as a cause of morbidity and mortality was higher in neonate and juvenile takin groups combined (morbidity = 19%; mortality = 50%) as compared to adult and senior takin groups combined (morbidity = 15%; mortality = 11%). Older takin were euthanatized more often (57%; 16/28) than younger takin (29%; 4/14). Correlations between husbandry and health were difficult as a result of the inherent limitations of the survey. These data will inform takin-holding zoologic institutions and contribute to the successful management of takin in human care.


Assuntos
Doenças dos Animais/patologia , Criação de Animais Domésticos , Animais de Zoológico , Ruminantes , Envelhecimento , Doenças dos Animais/mortalidade , Animais , Bovinos , Feminino , Masculino , América do Norte/epidemiologia , Fatores Sexuais
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA