Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 105
Filtrar
1.
Environ Sci Technol ; 58(20): 8696-8708, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38717867

RESUMO

United Nations Sustainable Development Goal 6 tackles the long-neglected economic dimension of water utilization by monitoring nations' water use efficiency (WUE). However, it is imperative to emphasize the need for consistent spatial-temporal subnational WUE estimates, rather than relying solely on recent national trends, which can obscure crucial water use concerns and improvement opportunities. Here, a time series analysis of national, state, and sectoral (e.g., industrial, service, and agriculture) WUE from 1980 to 2015 was developed by compiling the most comprehensive and disaggregated water and economic data from 3243 US counties and 50 US states. The US total WUE increased by 181% from 16.2 (1985) to 45.6 USD/m3 (2015), driven by service sector WUE enhancements. The increased industry and service WUEs in most states were more strongly correlated with decreased per capita water withdrawal than with economic growth. Simultaneously, reductions in agriculture WUE were observed in 18 states potentially because of the complicated interaction of diverse factors specific to local communities. Expanding WUE gaps between affluent and less affluent states, and persisting WUE gaps between water-abundant andwater-scarce states highlight the need to advance policies to support under-resourced communities in effective water planning and water pricing for advancing equitable development.


Assuntos
Abastecimento de Água , Estados Unidos , Agricultura/economia , Água , Desenvolvimento Sustentável
2.
medRxiv ; 2024 Apr 19.
Artigo em Inglês | MEDLINE | ID: mdl-38699355

RESUMO

Introduction: Massachusetts (MA) enacted statewide regulation on all flavored tobacco products in June 2020. Thereafter, electronic cigarettes (e-cigarettes) labeled 'clear' emerged on the market. We aimed to combine cardiovascular health effects with chemical analysis of 'clear' e-cigarettes. Methods: We measured acute changes in blood pressure and heart rate following a 10-minute structured use of participants' own e-cigarette, comparing 'clear' e-cigarette users with other flavored e-cigarette users and non-users. Chemical characterization and quantification of relevant flavorings and cooling agents (WS-3, WS-23) of 19 'clear'-labeled disposable e-cigarette liquids was carried out by GC/MS. Results: After the ban, participants that used 'clear' labeled e-cigarettes increased from 0% to 21%. Increase in diastolic blood pressure and heart rate was significantly greater in 'clear' e-cigarettes users (n=22) compared to both non-'clear' flavored e-cigarette users (n=114) and non-users (n=72). We saw similar results in heart rate when comparing Juul e-cigarette and 'clear' users; Juul was used as a reference as synthetic coolants WS-3 or WS-23 were not detected in these.All (19/19) 'clear' e-liquids were found to contain synthetic cooling agents WS-23 and/or WS-3, menthol (18/19), as well as other flavorings (12/19). Discussion: The detected presence of menthol alongside other flavorings in tested 'clear' products is a direct violation of the MA flavored tobacco product regulation, warranting stricter monitoring for new products and constituents. 'clear' e-cigarette use led to greater hemodynamic effects compared to other flavored e-cigarettes and Juul, which raises questions about the effect of cooling agents on users.

3.
medRxiv ; 2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38766027

RESUMO

The recent introduction of electronic cigarette products containing a synthetic nicotine analog, 6-methyl nicotine (6MN), challenges FDA's tobacco regulatory authority. A similar strategy is pursued by vendors of recently introduced e-cigarette liquids containing nicotinamide (NA), marketed as 'Nixotine' or 'Nixamide'. Compared to nicotine, 6MN is pharmacologically more potent at nicotinic receptors, and more toxic, raising concerns about increased addictiveness and adverse effects. Here, combinations of gas chromatography, high performance liquid chromatography and mass spectrometry were used to determine nicotine analogs, flavor and sweetener contents of e-cigarette liquids of the brands "SpreeBar" and ECBlend "Nixotine" products. All SpreeBar products, labelled as containing 5% 6-methyl nicotine, contained only 0.61-0.64% 6-methylnicotine, while "Nixotine" samples contained 7-46% less of the declared nicotinamide contents. Although "Nixotine" product labels did not list 6MN as an ingredient, small amounts of 6-methyl nicotine were detected. All 'SpreeBar' samples contained the artificial sweetener neotame (0.20-0.86µg/mg). Results identified significant discrepancies between declared and measured constituents of e-cigarette products containing nicotine alternatives. The discrepancy is misleading for consumers and raises concerns about production errors. 'SpreeBar' products also contained neotame, a high-intensity sweetener with high heat stability, likely increasing appeal to young and first-time users. Novel e-cigarette products with misleading labels containing nicotine analogs instead of nicotine on the US market is concerning and should be urgently addressed by lawmakers and regulators.

5.
Small ; : e2309919, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-38377304

RESUMO

Despite gold-based nanomaterials having a unique role in nanomedicine, among other fields, synthesis limitations relating to reaction scale-up and control result in prohibitively high gold nanoparticle costs. In this work, a new preparation procedure for lipid bilayer-coated gold nanoparticles in water is presented, using sodium oleate as reductant and capping agent. The seed-free synthesis not only allows for size precision (8-30 nm) but also remarkable particle concentration (10 mm Au). These reaction efficiencies allow for multiplexing and reaction standardization in 96-well plates using conventional thermocyclers, in addition to simple particle purification via microcentrifugation. Such a multiplexing approach also enables detailed spectroscopic investigation of the nonlinear growth process and dynamic sodium oleate/oleic acid self-assembly. In addition to scalability (at gram-level), resulting gold nanoparticles are stable at physiological pH, in common cell culture media, and are autoclavable. To demonstrate the versatility and applicability of the reported method, a robust ligand exchange with thiolated polyethylene glycol analogues is also presented.

6.
ACS Appl Mater Interfaces ; 16(3): 3427-3441, 2024 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-38194630

RESUMO

The study presents a streamlined one-step process for producing highly porous, metal-free, N-doped activated carbon (N-AC) for CO2 capture and herbicide removal from simulated industrially polluted and real environmental systems. N-AC was prepared from kraft lignin─a carbon-rich and abundant byproduct of the pulp industry, using nitric acid as the activator and urea as the N-dopant. The reported carbonization process under a nitrogen atmosphere renders a product with a high yield of 30% even at high temperatures up to 800 °C. N-AC exhibited a substantial high N content (4-5%), the presence of aliphatic and phenolic OH groups, and a notable absence of carboxylic groups, as confirmed by Fourier transform infrared spectroscopy, X-ray photoelectron spectroscopy, and Boehm's titration. Porosity analysis indicated that micropores constituted the majority of the pore structure, with 86% of pores having diameters less than 0.6 nm. According to BET adsorption analysis, the developed porous structure of N-AC boasted a substantial specific surface area of 1000 m2 g-1. N-AC proved to be a promising adsorbent for air and water purification. Specifically, N-AC exhibited a strong affinity for CO2, with an adsorption capacity of 1.4 mmol g-1 at 0.15 bar and 20 °C, and it demonstrated the highest selectivity over N2 from the simulated flue gas system (27.3 mmol g-1 for 15:85 v/v CO2/N2 at 20 °C) among all previously reported nitrogen-doped AC materials from kraft lignin. Moreover, N-AC displayed excellent reusability and efficient CO2 release, maintaining an adsorption capacity of 3.1 mmol g-1 (at 1 bar and 25 °C) over 10 consecutive adsorption-desorption cycles, confirming N-AC as a useful material for CO2 storage and utilization. The unique cationic nature of N-AC enhanced the adsorption of herbicides in neutral and weakly basic environments, which is relevant for real waters. It exhibited an impressive adsorption capacity for the herbicide 2,4-dichlorophenoxyacetic acid (2,4-D) at 96 ± 6 mg g-1 under pH 6 and 25 °C according to the Langmuir-Freundlich model. Notably, N-AC preserves its high adsorption capacity toward 2,4-D from simulated groundwater and runoff from tomato greenhouse, while performance in real samples from Fyris river in Uppsala, Sweden, causes a decrease of only 4-5%. Owing to the one-step process, high yield, annual abundance of kraft lignin, and use of environmentally friendly activating agents, N-AC has substantial potential for large-scale industrial applications.

10.
JAMA ; 330(17): 1689-1691, 2023 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-37812408

RESUMO

This study uses a bioassay and chemical analysis to determine the proportion of newly introduced "non-menthol" cigarette brands with sensory cooling effects, cooling agents added, and any other flavor additives after menthol cigarette bans.


Assuntos
Aromatizantes , Produtos do Tabaco , California , Sistemas Eletrônicos de Liberação de Nicotina , Aromatizantes/análise , Massachusetts , Mentol , Produtos do Tabaco/análise
11.
ACS Appl Mater Interfaces ; 15(37): 44224-44237, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37688548

RESUMO

Adsorption and ion exchange technologies are two of the most widely used approaches to separate pollutants from water; however, their intrinsic diffusion limitations continue to be a challenge. Pore functionalized membranes are a promising technology that can help overcome these challenges, but the extents of their competitive benefits and broad applicability have not been systematically evaluated. Herein, three types of adsorptive/ion exchange (IX) polymers containing strong/weak acid, strong base, and iron-chitosan complex groups were synthesized in the pores and partially on the surface of microfiltration (MF) membranes and tested for the removal of organic and inorganic cations and anions from water, including arsenic, per- and polyfluoroalkyl substances (PFAS), and calcium (hardness). When directly compared with beads (0.5-6 mm) and crushed resins (0.05 mm), adsorptive/IX pore-functionalized membranes demonstrated an increased relative sorption capacity, up to 2 orders of magnitude faster kinetics and the ability to regenerate up to 70-100% of their capacity while concentrating the initial solution concentration up to 12 times. The simple and versatile synthesis approach used to functionalize membranes, notably independent of the polymer type of the MF membrane, utilized pores throughout the entire cross section of the membrane to immobilize the polymers that contain the functional groups. Utilizing the pore volume of commercial membranes (6-112 mL/m2), the scientific weight capacity of the polymer (3.1-11.5 mequiv/g), and the synthesis conditions (e.g., monomer concentration), the theoretical adsorption/IX capacities per area of the membranes were calculated to be as high as 550 mequiv/m2, substantially higher than the 175 mequiv/m2 value needed to compete with commercially available IX resins. This work therefore shows that pore functionalized membranes are a promising path to tackle water contamination challenges, lowering separation diffusion limitations.

12.
Environ Sci Technol ; 57(32): 11718-11730, 2023 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-37527361

RESUMO

An expanding web of adverse impacts on people and the environment has been steadily linked to anthropogenic chemicals and their proliferation. Central to this web are the regulatory structures intended to protect human and environmental health through the control of new molecules. Through chronically insufficient and inefficient action, the current chemical-by-chemical regulatory approach, which considers regulation at the level of chemical identity, has enabled many adverse impacts to develop and persist. Recognizing the link between fundamental physicochemical properties and hazards, we describe a new paradigm─property-based regulation. By regulating physicochemical properties, we show how governments can delineate and enforce safe chemical spaces, increasing the scalability of chemical assessments, reducing the time and resources to regulate a substance, and providing transparency for chemical designers. We highlight sparse existing property-based approaches and demonstrate their applicability using bioaccumulation as an example. Finally, we present a path to implementation in the United States, prescribing roles and steps for government, nongovernmental organizations, and industry to accelerate this transition, to the benefit of all.

13.
ACS Appl Mater Interfaces ; 15(29): 34829-34837, 2023 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-37441746

RESUMO

Organic capping agents are a ubiquitous and crucial part of preparing reproducible and homogeneous batches of nanomaterials, particularly nanocrystals with well-defined facets. Despite studies reporting surface ligands (e.g., capping agents) having a non-negligible role in catalytic behavior, their impact is less understood in contaminant adsorption, an important consideration given their potential to obfuscate facet-dependent trends in performance. To ascribe observed behaviors to the facet or the ligand, this report evaluates the impact of poly(N-vinyl-2-pyrrolidone) (PVP), a commonly utilized capping agent, on the adsorption performance of nanohematite particles of varying prevailing facet in the removal of selenite (Se(IV)) as a model system. The PVP capping agent reduces the available surface area for contaminant binding, thus resulting in a reduction in overall Se(IV) adsorbed. However, accounting for the effects of surface area, {012}-faceted nanohematite demonstrates a significantly higher sorption capacity for Se(IV) compared with that of {001}-faceted nanohematite. Notably, chemical treatment is minimally effective in removing strongly bound PVP, indicating that complete removal of surface ligands remains challenging.

14.
bioRxiv ; 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37292602

RESUMO

RATIONALE: The ban of menthol cigarettes is one of the key strategies to promote smoking cessation in the United States. Menthol cigarettes are preferred by young beginning smokers for smoking initiation. Almost 90% of African American smokers use menthol cigarettes, a result of decades-long targeted industry marketing. Several states and municipalities already banned menthol cigarettes, most recently California, effective on December 21, 2022. In the weeks before California's ban took effect, the tobacco industry introduced several "non-menthol" cigarette products in California, replacing previously mentholated brands. Here, we hypothesize that tobacco companies replaced menthol with synthetic cooling agents to create a cooling effect without using menthol. Similar to menthol, these agents activate the TRPM8 cold-menthol receptor in sensory neurons innervating the upper and lower airways. METHODS: Calcium microfluorimetry in HEK293t cells expressing the TRPM8 cold/menthol receptors was used to determine sensory cooling activity of extracts prepared from these "non-menthol" cigarette brands, and compared to standard menthol cigarette extracts of the same brands. Specificity of receptor activity was validated using TRPM8-selective inhibitor, AMTB. Gas chromatography mass spectrometry (GCMS) was used to determine presence and amounts of any flavoring chemicals, including synthetic cooling agents, in the tobacco rods, wrapping paper, filters and crushable capsule (if present) of these "non-menthol" cigarettes. RESULTS: Compared to equivalent menthol cigarette extracts, several California-marketed "non-menthol" cigarette extracts activated cold/menthol receptor TRPM8 at higher dilutions and with stronger efficacies, indicating substantial pharmacological activity to elicit robust cooling sensations. Synthetic cooling agent, WS-3, was detected in tobacco rods of several of these "non-menthol" cigarette brands. Crushable capsules added to certain "non-menthol" crush varieties contained neither WS-3 nor menthol but included several "sweet" flavorant chemicals, including vanillin, ethyl vanillin and anethole. CONCLUSION: Tobacco companies have replaced menthol with the synthetic cooling agent, WS-3, in California-marketed "non-menthol" cigarettes. WS-3 creates a cooling sensation similar to menthol, but lacks menthol's characteristic "minty" odor. The measured WS-3 content is sufficient to elicit cooling sensations in smokers, similar to menthol, that facilitate smoking initiation and act as a reinforcing cue. Regulators need to act quickly to prevent the tobacco industry from bypassing menthol bans by substituting menthol with synthetic cooling agents, and thereby thwarting smoking cessation efforts.

15.
Proc Natl Acad Sci U S A ; 120(24): e2218828120, 2023 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-37276416

RESUMO

The foundations of today's societies are provided by manufactured capital accumulation driven by investment decisions through time. Reconceiving how the manufactured assets are harnessed in the production-consumption system is at the heart of the paradigm shifts necessary for long-term sustainability. Our research integrates 50 years of economic and environmental data to provide the global legacy environmental footprint (LEF) and unveil the historical material extractions, greenhouse gas emissions, and health impacts accrued in today's manufactured capital. We show that between 1995 and 2019, global LEF growth outpaced GDP and population growth, and the current high level of national capital stocks has been heavily relying on global supply chains in metals. The LEF shows a larger or growing gap between developed economies (DEs) and less-developed economies (LDEs) while economic returns from global asset supply chains disproportionately flow to DEs, resulting in a double burden for LDEs. Our results show that ensuring best practice in asset production while prioritizing well-being outcomes is essential in addressing global inequalities and protecting the environment. Achieving this requires a paradigm shift in sustainability science and policy, as well as in green finance decision-making, to move beyond the focus on the resource use and emissions of daily operations of the assets and instead take into account the long-term environmental footprints of capital accumulation.

16.
Tob Control ; 2023 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-37380351

RESUMO

BACKGROUND: US sales of oral nicotine pouches (ONPs) have rapidly increased, with cool/mint-flavoured ONPs the most popular flavour category. Restrictions on sales of flavoured tobacco products have either been implemented or proposed by several US states and localities. Zyn, the most popular ONP brand, is marketing Zyn Chill and Zyn Smooth as 'Flavour-Ban Approved' or 'unflavoured', probably to evade flavour bans and increase product appeal. At present, it is unclear whether these ONPs are indeed free of flavour additives that can impart pleasant sensations such as cooling. METHODS: Sensory cooling and irritant activities of 'Flavour-Ban Approved' Zyn ONPs, Chill and Smooth, along with minty varieties (Cool Mint, Peppermint, Spearmint, Menthol), were analysed by Ca2+ microfluorimetry in HEK293 cells expressing the cold/menthol (TRPM8) or menthol/irritant receptor (TRPA1). Flavour chemical content of these ONPs was analysed by gas chromatography/mass spectrometry. RESULTS: Zyn Chill ONP extracts robustly activated TRPM8, with much higher efficacy (39%-53%) than the mint-flavoured ONPs. In contrast, mint-flavoured ONP extracts elicited stronger TRPA1 irritant receptor responses than Chill extracts. Chemical analysis demonstrated that Chill exclusively contained WS-3, an odourless synthetic cooling agent, while mint-flavoured ONPs contained WS-3 together with mint flavourants. CONCLUSIONS: ONP products marketed as 'Flavour-Ban Approved' or 'unflavoured' contain flavouring agents, proving that the manufacturer's advertising is misleading. Synthetic coolants such as WS-3 can provide a robust cooling sensation with reduced sensory irritancy, thereby increasing product appeal and use. Regulators need to develop effective strategies for the control of odourless sensory additives used by the industry to bypass flavour bans.

18.
bioRxiv ; 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36865160

RESUMO

Background: US sales of oral nicotine pouches (ONPs) have rapidly increased, with cool/mint-flavored ONPs the most popular. Restrictions on sales of flavored tobacco products have either been implemented or proposed by several US states and localities. Zyn, the most popular ONP brand, is marketing Zyn-"Chill" and Zyn-"Smooth" as "Flavor-Ban Approved", probably to evade flavor bans. At present it is unclear whether these ONPs are indeed free of flavor additives that can impart pleasant sensations such as cooling. Methods: Sensory cooling and irritant activities of "Flavor-Ban Approved" ONPs, Zyn-"Chill" and "Smooth", along with "minty" varieties (Cool Mint, Peppermint, Spearmint, Menthol), were analyzed by Ca2+ microfluorimetry in HEK293 cells expressing the cold/menthol (TRPM8) or menthol/irritant receptor (TRPA1). Flavor chemical content of these ONPs was analyzed by GC/MS. Results: Zyn-"Chill" ONP extracts robustly activated TRPM8, with much higher efficacy (39-53%) than the mint-flavored ONPs. In contrast, mint-flavored ONP extracts elicited stronger TRPA1 irritant receptor responses than Zyn-"Chill" extracts. Chemical analysis demonstrated the presence of WS-3, an odorless synthetic cooling agent, in Zyn-"Chill" and several other mint-flavored Zyn-ONPs. Conclusions: Synthetic cooling agents such as WS-3 found in 'Flavor-Ban Approved' Zyn-"Chill" can provide a robust cooling sensation with reduced sensory irritancy, thereby increasing product appeal and use. The label "Flavor-Ban Approved" is misleading and may implicate health benefits. Regulators need to develop effective strategies for the control of odorless sensory additives used by the industry to bypass flavor bans.

19.
Environ Sci Technol ; 57(9): 3940-3950, 2023 03 07.
Artigo em Inglês | MEDLINE | ID: mdl-36800282

RESUMO

Selective and highly efficient extraction technologies for the recovery of critical metals including lithium, nickel, cobalt, and manganese from spent lithium-ion battery (LIB) cathode materials are essential in driving circularity. The tailored deep eutectic solvent (DES) choline chloride-formic acid (ChCl-FA) demonstrated a high selectivity and efficiency in extracting critical metals from mixed cathode materials (LiFePO4:Li(NiCoMn)1/3O2 mass ratio of 1:1) under mild conditions (80 °C, 120 min) with a solid-liquid mass ratio of 1:200. The leaching performance of critical metals could be further enhanced by mechanochemical processing because of particle size reduction, grain refinement, and internal energy storage. Furthermore, mechanochemical reactions effectively inhibited undesirable leaching of nontarget elements (iron and phosphorus), thus promoting the selectivity and leaching efficiency of critical metals. This was achieved through the preoxidation of Fe and the enhanced stability of iron phosphate framework, which significantly increased the separation factor of critical metals to nontarget elements from 56.9 to 1475. The proposed combination of ChCl-FA extraction and the mechanochemical reaction can achieve a highly selective extraction of critical metals from multisource spent LIBs under mild conditions.


Assuntos
Lítio , Reciclagem , Metais , Cobalto , Fontes de Energia Elétrica , Ferro
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA