Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 25
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Cell Rep ; 43(6): 114253, 2024 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-38781074

RESUMO

Diabetic kidney disease (DKD), the most common cause of kidney failure, is a frequent complication of diabetes and obesity, and yet to date, treatments to halt its progression are lacking. We analyze kidney single-cell transcriptomic profiles from DKD patients and two DKD mouse models at multiple time points along disease progression-high-fat diet (HFD)-fed mice aged to 90-100 weeks and BTBR ob/ob mice (a genetic model)-and report an expanding population of macrophages with high expression of triggering receptor expressed on myeloid cells 2 (TREM2) in HFD-fed mice. TREM2high macrophages are enriched in obese and diabetic patients, in contrast to hypertensive patients or healthy controls in an independent validation cohort. Trem2 knockout mice on an HFD have worsening kidney filter damage and increased tubular epithelial cell injury, all signs of worsening DKD. Together, our studies suggest that strategies to enhance kidney TREM2high macrophages may provide therapeutic benefits for DKD.


Assuntos
Nefropatias Diabéticas , Dieta Hiperlipídica , Rim , Macrófagos , Glicoproteínas de Membrana , Camundongos Knockout , Obesidade , Receptores Imunológicos , Animais , Receptores Imunológicos/metabolismo , Receptores Imunológicos/genética , Glicoproteínas de Membrana/metabolismo , Glicoproteínas de Membrana/genética , Macrófagos/metabolismo , Obesidade/metabolismo , Obesidade/patologia , Obesidade/complicações , Nefropatias Diabéticas/metabolismo , Nefropatias Diabéticas/patologia , Camundongos , Rim/patologia , Rim/metabolismo , Humanos , Masculino , Camundongos Endogâmicos C57BL , Feminino
2.
bioRxiv ; 2024 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-38464230

RESUMO

Nephronophthisis (NPHP) and autosomal dominant Polycystic Kidney Disease (ADPKD) are two genetically distinct forms of Polycystic Kidney Disease (PKD), yet both diseases present with kidney cysts and a gradual decline in renal function. Prevailing dogma in PKD is that changes in kidney architecture account for the decline in kidney function, but the molecular/cellular basis of such coupling is unknown. To address this question, we induced a form of proteome reprogramming by deleting Fbxw7 encoding FBW7, the recognition receptor of the SCF FBW7 E3 ubiquitin ligase in different segments of the kidney tubular system. Deletion of Fbxw7 in the medulla led to a juvenile-adult NPHP-like phenotype, where the decline in renal function was due to SOX9-mediated interstitial fibrosis rather than cystogenesis. In contrast, the decline of renal function in ADPKD is coupled to cystic expansion via the abnormal accumulation of FBW7 in the proximal tubules and other cell types in the renal cortex. We propose that FBW7 functions at the apex of a protein network that determines renal function in ADPKD by sensing architectural changes induced by cystic expansion.

3.
Kidney360 ; 5(3): 459-470, 2024 Mar 01.
Artigo em Inglês | MEDLINE | ID: mdl-38297436

RESUMO

AKI is characterized by a sudden, and usually reversible, decline in kidney function. In mice, ischemia-reperfusion injury (IRI) is commonly used to model the pathophysiologic features of clinical AKI. Macrophages are a unifying feature of IRI as they regulate both the initial injury response as well as the long-term outcome following resolution of injury. Initially, macrophages in the kidney take on a proinflammatory phenotype characterized by the production of inflammatory cytokines, such as CCL2 (monocyte chemoattractant protein 1), IL-6, IL-1 ß , and TNF- α . Release of these proinflammatory cytokines leads to tissue damage. After resolution of the initial injury, macrophages take on a reparative role, aiding in tissue repair and restoration of kidney function. By contrast, failure to resolve the initial injury results in prolonged inflammatory macrophage accumulation and increased kidney damage, fibrosis, and the eventual development of CKD. Despite the extensive amount of literature that has ascribed these functions to M1/M2 macrophages, a recent paradigm shift in the macrophage field now defines macrophages on the basis of their ontological origin, namely monocyte-derived and tissue-resident macrophages. In this review, we focus on macrophage phenotype and function during IRI-induced injury, repair, and transition to CKD using both the classic (M1/M2) and novel (ontological origin) definition of kidney macrophages.


Assuntos
Injúria Renal Aguda , Insuficiência Renal Crônica , Traumatismo por Reperfusão , Camundongos , Animais , Macrófagos , Citocinas/genética , Fenótipo , Fator de Necrose Tumoral alfa/genética , Injúria Renal Aguda/genética , Reperfusão , Isquemia
4.
Methods Mol Biol ; 2713: 171-181, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-37639123

RESUMO

Renal macrophages help maintain homeostasis, participate in tissue injury and repair, and play a vital role in immune surveillance [1-3]. Kidney macrophages can be broken down into two subsets, infiltrating macrophages, which can be further broken down into Ly6Chi and Ly6Clo cells, and kidney resident macrophages. While recent studies have shed light on the differing origins and niches of these cells, a more thorough understanding of kidney macrophage populations and how they may respond to various conditions is needed. This protocol describes how to efficiently isolate murine kidney macrophage populations for flow cytometry analysis.


Assuntos
Vigilância Imunológica , Rim , Animais , Camundongos , Citometria de Fluxo , Homeostase , Macrófagos
5.
JCI Insight ; 8(12)2023 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-37345660

RESUMO

Innate and adaptive immune cells modulate the severity of autosomal dominant polycystic kidney disease (ADPKD), a common kidney disease with inadequate treatment options. ADPKD has parallels with cancer, in which immune checkpoint inhibitors have been shown to reactivate CD8+ T cells and slow tumor growth. We have previously shown that in PKD, CD8+ T cell loss worsens disease. This study used orthologous early-onset and adult-onset ADPKD models (Pkd1 p.R3277C) to evaluate the role of immune checkpoints in PKD. Flow cytometry of kidney cells showed increased levels of programmed cell death protein 1 (PD-1)/cytotoxic T lymphocyte associated protein 4 (CTLA-4) on T cells and programmed cell death ligand 1 (PD-L1)/CD80 on macrophages and epithelial cells in Pkd1RC/RC mice versus WT, paralleling disease severity. PD-L1/CD80 was also upregulated in ADPKD human cells and patient kidney tissue versus controls. Genetic PD-L1 loss or treatment with an anti-PD-1 antibody did not impact PKD severity in early-onset or adult-onset ADPKD models. However, treatment with anti-PD-1 plus anti-CTLA-4, blocking 2 immune checkpoints, improved PKD outcomes in adult-onset ADPKD mice; neither monotherapy altered PKD severity. Combination therapy resulted in increased kidney CD8+ T cell numbers/activation and decreased kidney regulatory T cell numbers correlative with PKD severity. Together, our data suggest that immune checkpoint activation is an important feature of and potential novel therapeutic target in ADPKD.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Adulto , Humanos , Animais , Camundongos , Antígeno B7-H1 , Rim , Terapia Combinada , Antígeno B7-1
6.
Front Immunol ; 14: 1082078, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37256130

RESUMO

Kidney macrophages are comprised of both monocyte-derived and tissue resident populations; however, the heterogeneity of kidney macrophages and factors that regulate their heterogeneity are poorly understood. Herein, we performed single cell RNA sequencing (scRNAseq), fate mapping, and parabiosis to define the cellular heterogeneity of kidney macrophages in healthy mice. Our data indicate that healthy mouse kidneys contain four major subsets of monocytes and two major subsets of kidney resident macrophages (KRM) including a population with enriched Ccr2 expression, suggesting monocyte origin. Surprisingly, fate mapping data using the newly developed Ms4a3Cre Rosa Stopf/f TdT model indicate that less than 50% of Ccr2+ KRM are derived from Ly6chi monocytes. Instead, we find that Ccr2 expression in KRM reflects their spatial distribution as this cell population is almost exclusively found in the kidney cortex. We also identified Cx3cr1 as a gene that governs cortex specific accumulation of Ccr2+ KRM and show that loss of Ccr2+ KRM reduces the severity of cystic kidney disease in a mouse model where cysts are mainly localized to the kidney cortex. Collectively, our data indicate that Cx3cr1 regulates KRM heterogeneity and niche-specific disease progression.


Assuntos
Macrófagos , Monócitos , Camundongos , Animais , Macrófagos/metabolismo , Monócitos/metabolismo , Rim/metabolismo , Receptores de Quimiocinas/metabolismo , Modelos Animais de Doenças , Receptor 1 de Quimiocina CX3C/genética , Receptor 1 de Quimiocina CX3C/metabolismo
7.
Dis Model Mech ; 16(1)2023 01 01.
Artigo em Inglês | MEDLINE | ID: mdl-36457161

RESUMO

Although renal macrophages have been shown to contribute to cyst development in polycystic kidney disease (PKD) animal models, it remains unclear whether there is a specific macrophage subpopulation involved. Here, we analyzed changes in macrophage populations during renal maturation in association with cystogenesis rates in conditional Pkd2 mutant mice. We observed that CD206+ resident macrophages were minimal in a normal adult kidney but accumulated in cystic areas in adult-induced Pkd2 mutants. Using Cx3cr1 null mice, we reduced macrophage number, including CD206+ macrophages, and showed that this significantly reduced cyst severity in adult-induced Pkd2 mutant kidneys. We also found that the number of CD206+ resident macrophage-like cells increased in kidneys and in the urine from autosomal-dominant PKD (ADPKD) patients relative to the rate of renal functional decline. These data indicate a direct correlation between CD206+ resident macrophages and cyst formation, and reveal that the CD206+ resident macrophages in urine could serve as a biomarker for renal cystic disease activity in preclinical models and ADPKD patients. This article has an associated First Person interview with the first author of the paper.


Assuntos
Cistos , Rim Policístico Autossômico Dominante , Camundongos , Animais , Rim , Macrófagos , Camundongos Knockout , Biomarcadores , Modelos Animais de Doenças
8.
J Am Soc Nephrol ; 33(4): 747-768, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-35110364

RESUMO

BACKGROUND: Inducible disruption of cilia-related genes in adult mice results in slowly progressive cystic disease, which can be greatly accelerated by renal injury. METHODS: To identify in an unbiased manner modifier cells that may be influencing the differential rate of cyst growth in injured versus non-injured cilia mutant kidneys at a time of similar cyst severity, we generated a single-cell atlas of cystic kidney disease. We conducted RNA-seq on 79,355 cells from control mice and adult-induced conditional Ift88 mice (hereafter referred to as cilia mutant mice) that were harvested approximately 7 months post-induction or 8 weeks post 30-minute unilateral ischemia reperfusion injury. RESULTS: Analyses of single-cell RNA-seq data of CD45+ immune cells revealed that adaptive immune cells differed more in cluster composition, cell proportion, and gene expression than cells of myeloid origin when comparing cystic models with one another and with non-cystic controls. Surprisingly, genetic deletion of adaptive immune cells significantly reduced injury-accelerated cystic disease but had no effect on cyst growth in non-injured cilia mutant mice, independent of the rate of cyst growth or underlying genetic mutation. Using NicheNet, we identified a list of candidate cell types and ligands that were enriched in injured cilia mutant mice compared with aged cilia mutant mice and non-cystic controls that may be responsible for the observed dependence on adaptive immune cells during injury-accelerated cystic disease. CONCLUSIONS: Collectively, these data highlight the diversity of immune cell involvement in cystic kidney disease.


Assuntos
Cistos , Doenças Renais Policísticas , Animais , Cílios/metabolismo , Cistos/genética , Rim/metabolismo , Camundongos , Mutação , Doenças Renais Policísticas/metabolismo
10.
Am J Physiol Renal Physiol ; 321(2): F162-F169, 2021 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-34180717

RESUMO

Kidney resident macrophages (KRMs) are involved in maintaining renal homeostasis and in controlling the pathological outcome of acute kidney injury and cystic kidney disease in mice. In adult mice, KRMs maintain their population through self-renewal with little or no input from the peripheral blood. Despite recent data suggesting that a transcriptionally similar population of KRM-like cells is present across species, the idea that they are self-renewing and minimally dependent on peripheral blood input in other species has yet to be proven due to the lack of an appropriate model and cross-species expression markers. In this study, we used our recently identified cross-species KRM cell surface markers and parabiosis surgery in inbred Lewis rats to determine if rat KRMs are maintained independent of peripheral blood input, similar to their mouse counterparts. Flow cytometry analysis indicated that parabiosis surgery in the rat results in the establishment of chimerism of T/B cells, neutrophils, and monocyte-derived infiltrating macrophages in the blood, spleen, and kidney 3 wk after parabiosis surgery. Analysis of KRMs using the cell surface markers CD81 and C1q indicated that these cells have minimal chimerism and, therefore, receive little input from the peripheral blood. These data indicate that KRM properties are conserved in at least two different species.NEW & NOTEWORTHY In this report, we performed parabiosis surgery on inbred Lewis rats and showed that rat kidney resident macrophages (KRMs), identified using our novel cross-species markers, are minimally dependent on peripheral blood input. Thus, for the first time, to our knowledge, we confirm that a hallmark of mouse KRMs is also present in KRMs isolated from another species.


Assuntos
Rim/citologia , Macrófagos/citologia , Monócitos/citologia , Animais , Feminino , Masculino , Parabiose , Ratos , Ratos Endogâmicos Lew , Baço/citologia
11.
Lab Invest ; 101(10): 1382-1393, 2021 10.
Artigo em Inglês | MEDLINE | ID: mdl-34158590

RESUMO

Hepatorenal fibrocystic disease (HRFCD) is a genetically inherited disorder related to primary cilia dysfunction in which patients display varying levels of fibrosis, bile duct expansion, and inflammation. In mouse models of HRFCD, the phenotype is greatly impacted by the genetic background in which the mutation is placed. Macrophages are a common factor associated with progression of HRFCD and are also strongly influenced by the genetic background. These data led us to hypothesize that macrophage subtypes that change in relation to the genetic background are responsible for the variable phenotypic outcomes in HRFCD. To test this hypothesis, we utilized a mouse model of HRFCD (Ift88Orpk mice) on the C57BL/6 and BALB/c inbred backgrounds that have well-documented differences in macrophage subtypes. Our analyses of infiltrating macrophage subtypes confirm that genetic strain influences the subtype of infiltrating macrophage present during normal postnatal liver development and in Ift88Orpk livers (Ly6clo in C57BL/6 vs Ly6chi in BALB/c). Each infiltrating macrophage subtype was similarly associated with a unique phenotypic outcome as analysis of liver tissue shows that C57BL/6 Ift88Orpk mice have increased bile duct expansion, but reduced levels of fibrosis compared to BALB/c Ift88Orpk livers. RNA sequencing data suggest that the ability to infiltrate macrophage subtypes to influence the phenotypic outcome may be due to unique ligand-receptor signaling between infiltrating macrophages and cilia dysfunctional biliary epithelium. To evaluate whether specific macrophage subtypes cause the observed phenotypic divergence, we analyzed the liver phenotype in BALB/c Ift88Orpk mice on a CCR2-/- background. Unexpectedly, the loss of Ly6chi macrophages, which were strongly enriched in BALB/c Ift88Orpk mice, did not significantly alter liver fibrosis. These data indicate that macrophage subtypes may correlate with HRFCD phenotypic outcome, but do not directly cause the pathology.


Assuntos
Cirrose Hepática , Macrófagos , Animais , Citocinas/metabolismo , Modelos Animais de Doenças , Feminino , Fígado/metabolismo , Macrófagos/classificação , Macrófagos/imunologia , Macrófagos/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos BALB C , Camundongos Endogâmicos C57BL , Fenótipo
12.
Kidney360 ; 2(1): 167-175, 2021 01 28.
Artigo em Inglês | MEDLINE | ID: mdl-33623927

RESUMO

Interstitial inflammation is an important feature of cystic kidney disease. Renal macrophages are the most well-studied inflammatory cell in the kidney, and their involvement in cyst formation has been reported in different animal models and patients with cystic kidney disease. Originally, it was believed that renal macrophages were maintained from a constant supply of bone marrow-derived circulating monocytes, and could be recruited to the kidney in response to local inflammation. However, this idea has been challenged using fate-mapping methods, by showing that at least two distinct developmental origins of macrophages are present in the adult mouse kidney. The first type, infiltrating macrophages, are recruited from circulating monocytes and gradually develop macrophage properties on entering the kidney. The second, resident macrophages, predominantly originate from embryonic precursors, colonize the kidney during its development, and proliferate in situ to maintain their population throughout adulthood. Infiltrating and resident macrophages work together to maintain homeostasis and properly respond to pathologic conditions, such as AKI, cystic kidney disease, or infection. This review will briefly summarize current knowledge of resident macrophages in cystic kidney disease.


Assuntos
Macrófagos , Doenças Renais Policísticas , Adulto , Animais , Humanos , Inflamação/metabolismo , Rim/patologia , Macrófagos/metabolismo , Camundongos , Monócitos/metabolismo , Doenças Renais Policísticas/metabolismo
13.
Cell Signal ; 73: 109647, 2020 09.
Artigo em Inglês | MEDLINE | ID: mdl-32325183

RESUMO

Polycystic Kidney Disease (PKD) triggers a robust immune system response including changes in both innate and adaptive immunity. These changes involve immune cells (e.g., macrophages and T cells) as well as cytokines and chemokines (e.g., MCP-1) that regulate the production, differentiation, homing, and various functions of these cells. This review is focused on the role of the immune system and its associated factors in the pathogenesis of PKDs as evidenced by data from cell-based systems, animal models, and PKD patients. It also highlights relevant pre-clinical and clinical studies that point to specific immune system components as promising candidates for the development of prognostic biomarkers and therapeutic strategies to improve PKD outcomes.


Assuntos
Imunidade Adaptativa , Quimiocinas/imunologia , Imunidade Inata , Rim Policístico Autossômico Dominante/imunologia , Animais , Biomarcadores/metabolismo , Linhagem Celular , Humanos
14.
Kidney360 ; 1(3): 179-190, 2020 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-33490963

RESUMO

BACKGROUND: Autosomal dominant polycystic kidney disease is caused by genetic mutations in PKD1 or PKD2. Macrophages and their associated inflammatory cytokines promote cyst progression; however, transcription factors within macrophages that control cytokine production and cystic disease are unknown. METHODS: In these studies, we used conditional Pkd1 mice to test the hypothesis that macrophage-localized interferon regulatory factor-5 (IRF5), a transcription factor associated with production of cyst-promoting cytokines (TNFα, IL-6), is required for accelerated cyst progression in a unilateral nephrectomy (1K) model. Analyses of quantitative real-time PCR (qRT-PCR) and flow-cytometry data 3 weeks post nephrectomy, a time point before the onset of severe cystogenesis, indicate an accumulation of inflammatory infiltrating and resident macrophages in 1K Pkd1 mice compared with controls. qRT-PCR data from FACS cells at this time demonstrate that macrophages from 1K Pkd1 mice have increased expression of Irf5 compared with controls. To determine the importance of macrophage-localized Irf5 in cyst progression, we injected scrambled or IRF5 antisense oligonucleotide (ASO) in 1K Pkd1 mice and analyzed the effect on macrophage numbers, cytokine production, and renal cystogenesis 6 weeks post nephrectomy. RESULTS: Analyses of qRT-PCR and IRF5 ASO treatment significantly reduced macrophage numbers, Irf5 expression in resident-but not infiltrating-macrophages, and the severity of cystic disease. In addition, IRF5 ASO treatment in 1K Pkd1 mice reduced Il6 expression in resident macrophages, which was correlated with reduced STAT3 phosphorylation and downstream p-STAT3 target gene expression. CONCLUSIONS: These data suggest that Irf5 promotes inflammatory cytokine production in resident macrophages resulting in accelerated cystogenesis.


Assuntos
Doenças Renais Policísticas , Rim Policístico Autossômico Dominante , Animais , Fatores Reguladores de Interferon/genética , Rim/metabolismo , Macrófagos/metabolismo , Camundongos , Doenças Renais Policísticas/metabolismo , Rim Policístico Autossômico Dominante/genética
15.
J Clin Invest ; 129(11): 4962-4978, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31609245

RESUMO

Macrophages are important in mounting an innate immune response to injury as well as in repair of injury. Gene expression of Rho proteins is known to be increased in fibrotic models; however, the role of these proteins in idiopathic pulmonary fibrosis (IPF) is not known. Here, we show that BAL cells from patients with IPF have a profibrotic phenotype secondary to increased activation of the small GTPase Rac1. Rac1 activation requires a posttranslational modification, geranylgeranylation, of the C-terminal cysteine residue. We found that by supplying more substrate for geranylgeranylation, Rac1 activation was substantially increased, resulting in profibrotic polarization by increasing flux through the mevalonate pathway. The increased flux was secondary to greater levels of acetyl-CoA from metabolic reprogramming to ß oxidation. The polarization mediated fibrotic repair in the absence of injury by enhancing macrophage/fibroblast signaling. These observations suggest that targeting the mevalonate pathway may abrogate the role of macrophages in dysregulated fibrotic repair.


Assuntos
Fibrose Pulmonar Idiopática/metabolismo , Macrófagos/metabolismo , Ácido Mevalônico/metabolismo , Acetilcoenzima A/genética , Acetilcoenzima A/metabolismo , Adolescente , Adulto , Idoso , Animais , Feminino , Humanos , Fibrose Pulmonar Idiopática/genética , Fibrose Pulmonar Idiopática/patologia , Macrófagos/patologia , Masculino , Camundongos , Camundongos Knockout , Pessoa de Meia-Idade , Neuropeptídeos/genética , Neuropeptídeos/metabolismo , Oxirredução , Proteínas rac1 de Ligação ao GTP/genética , Proteínas rac1 de Ligação ao GTP/metabolismo
16.
J Am Soc Nephrol ; 30(10): 1841-1856, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31337691

RESUMO

BACKGROUND: Mutations affecting cilia proteins have an established role in renal cyst formation. In mice, the rate of cystogenesis is influenced by the age at which cilia dysfunction occurs and whether the kidney has been injured. Disruption of cilia function before postnatal day 12-14 results in rapid cyst formation; however, cyst formation is slower when cilia dysfunction is induced after postnatal day 14. Rapid cyst formation can also be induced in conditional adult cilia mutant mice by introducing renal injury. Previous studies indicate that macrophages are involved in cyst formation, however the specific role and type of macrophages responsible has not been clarified. METHODS: We analyzed resident macrophage number and subtypes during postnatal renal maturation and after renal injury in control and conditional Ift88 cilia mutant mice. We also used a pharmacological inhibitor of resident macrophage proliferation and accumulation to determine the importance of these cells during rapid cyst formation. RESULTS: Our data show that renal resident macrophages undergo a phenotypic switch from R2b (CD11clo) to R2a (CD11chi) during postnatal renal maturation. The timing of this switch correlates with the period in which cyst formation transitions from rapid to slow following induction of cilia dysfunction. Renal injury induces the reaccumulation of juvenile-like R2b resident macrophages in cilia mutant mice and restores rapid cystogenesis. Loss of primary cilia in injured conditional Ift88 mice results in enhanced epithelial production of membrane-bound CSF1, a cytokine that promotes resident macrophage proliferation. Inhibiting CSF1/CSF1-receptor signaling with a CSF1R kinase inhibitor reduces resident macrophage proliferation, R2b resident macrophage accumulation, and renal cyst formation in two mouse models of cystic disease. CONCLUSIONS: These data uncover an important pathogenic role for resident macrophages during rapid cyst progression.


Assuntos
Doenças Renais Císticas/etiologia , Macrófagos/fisiologia , Animais , Cílios/genética , Feminino , Rim/crescimento & desenvolvimento , Macrófagos/classificação , Masculino , Camundongos , Mutação
17.
J Am Soc Nephrol ; 30(5): 767-781, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30948627

RESUMO

BACKGROUND: Resident macrophages regulate homeostatic and disease processes in multiple tissues, including the kidney. Despite having well defined markers to identify these cells in mice, technical limitations have prevented identification of a similar cell type across species. The inability to identify resident macrophage populations across species hinders the translation of data obtained from animal model to human patients. METHODS: As an entry point to determine novel markers that could identify resident macrophages across species, we performed single-cell RNA sequencing (scRNAseq) analysis of all T and B cell-negative CD45+ innate immune cells in mouse, rat, pig, and human kidney tissue. RESULTS: We identified genes with enriched expression in mouse renal resident macrophages that were also present in candidate resident macrophage populations across species. Using the scRNAseq data, we defined a novel set of possible cell surface markers (Cd74 and Cd81) for these candidate kidney resident macrophages. We confirmed, using parabiosis and flow cytometry, that these proteins are indeed enriched in mouse resident macrophages. Flow cytometry data also indicated the existence of a defined population of innate immune cells in rat and human kidney tissue that coexpress CD74 and CD81, suggesting the presence of renal resident macrophages in multiple species. CONCLUSIONS: Based on transcriptional signatures, our data indicate that there is a conserved population of innate immune cells across multiple species that have been defined as resident macrophages in the mouse. Further, we identified potential cell surface markers to allow for future identification and characterization of this candidate resident macrophage population in mouse, rat, and pig translational studies.


Assuntos
Antígenos de Diferenciação de Linfócitos B/imunologia , Antígenos de Histocompatibilidade Classe II/imunologia , Imunidade Inata/genética , Molécula 1 de Adesão Intercelular/imunologia , Macrófagos/metabolismo , Análise de Variância , Animais , Biomarcadores/metabolismo , Células Cultivadas , Citometria de Fluxo , Regulação da Expressão Gênica , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Animais , Parabiose , Ratos , Ratos Sprague-Dawley , Análise de Sequência de RNA , Especificidade da Espécie
18.
JCI Insight ; 4(2)2019 01 24.
Artigo em Inglês | MEDLINE | ID: mdl-30674729

RESUMO

Acute kidney injury (AKI) is a devastating clinical condition affecting at least two-thirds of critically ill patients, and, among these patients, it is associated with a greater than 60% risk of mortality. Kidney mononuclear phagocytes (MPs) are implicated in pathogenesis and healing in mouse models of AKI and, thus, have been the subject of investigation as potential targets for clinical intervention. We have determined that, after injury, F4/80hi-expressing kidney-resident macrophages (KRMs) are a distinct cellular subpopulation that does not differentiate from nonresident infiltrating MPs. However, if KRMs are depleted using polyinosinic/polycytidylic acid (poly I:C), they can be reconstituted from bone marrow-derived precursors. Further, KRMs lack major histocompatibility complex class II (MHCII) expression before P7 but upregulate it over the next 14 days. This MHCII- KRM phenotype reappears after injury. RNA sequencing shows that injury causes transcriptional reprogramming of KRMs such that they more closely resemble that found at P7. KRMs after injury are also enriched in Wingless-type MMTV integration site family (Wnt) signaling, indicating that a pathway vital for mouse and human kidney development is active. These data indicate that mechanisms involved in kidney development may be functioning after injury in KRMs.

19.
Physiol Rep ; 7(1): e13951, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30632307

RESUMO

Several innate immune response components were recognized as outcome predictors in autosomal dominant polycystic kidney disease (ADPKD) and their causative role in disease pathogenesis was confirmed in animal models. In contrast, the role of adaptive immunity in ADPKD remains relatively unexplored. Therefore, we evaluated T cell populations in kidney and urine of ADPKD patients using flow cytometry and confocal immunofluorescence microscopy approaches. These analyses revealed ADPKD-associated overall increases in the number of intrarenal CD4 and CD8 T cells that were associated with a loss of polarity in distribution between the cortex and medulla (higher in medulla vs. cortex in controls). Also, the urinary T cell-based index correlated moderately with renal function decline in a small cohort of ADPKD patients. Together, these data suggest that similar to innate immune responses, T cells participate in ADPKD pathogenesis. They also point to urinary T cells as a novel candidate marker of the disease activity in ADPKD.


Assuntos
Linfócitos T CD4-Positivos/patologia , Linfócitos T CD8-Positivos/patologia , Rim/patologia , Rim Policístico Autossômico Dominante/patologia , Adulto , Idoso , Idoso de 80 Anos ou mais , Feminino , Humanos , Rim/fisiopatologia , Masculino , Pessoa de Meia-Idade , Rim Policístico Autossômico Dominante/urina
20.
Am J Physiol Gastrointest Liver Physiol ; 314(6): G677-G689, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29543508

RESUMO

Hepatorenal fibrocystic disease (HRFCD) is characterized by cysts in the kidney and liver with associated fibrosis and is the result of defects in proteins required for cilia function or assembly. Previous reports indicate that macrophages, mainly M2-like macrophages, contribute to HRFCD, although the origin of these cells (yolk sac-derived resident macrophages vs. bone marrow-derived infiltrating macrophages) and their contribution to the observed phenotypes are unknown. We utilize a congenital model of cilia dysfunction (IFT88Orpk) to study the importance of macrophages in HRFCD. Our data show a rapid expansion of the bile duct region and development of fibrosis between 2 and 4 wk of age. Immunofluorescence microscopy analysis reveals an accumulation of F4/80+ macrophages in regions exhibiting biliary hyperplasia in IFT88Orpk mice. Flow cytometry data show that cilia dysfunction leads to an accumulation of infiltrating macrophages (CD11bhi, F4/80lo) and a reduction of resident macrophage (CD11blo, F4/80hi) number. A majority of the infiltrating macrophages are Ly6chi profibrogenic macrophages. Along with the accumulation of immune cells, expression of proinflammatory and profibrotic transcripts, including TGF-ß, TNF-α, IL-1ß, and chemokine (C-C) motif ligand 2, is increased. Quantitative RT-PCR analysis of flow-sorted cells shows enhanced expression of CCL2 in cholangiocytes and enhanced expression of VEGF-A and IL-6 in Ly6chi macrophages. Genetic inhibition of Ly6chi macrophage accumulation in IFT88Orpk FVB CCR2-/- mice reduced biliary fibrosis but did not affect epithelial expansion. Collectively, these studies suggest that biliary epithelium with defects in primary cilia preferentially recruits Ly6chi infiltrating macrophages, which promote fibrotic progression in HRFCD pathogenesis. NEW & NOTEWORTHY These studies are the first to address the contribution of the infiltrating and resident macrophage niche during progression of hepatorenal fibrocystic disease (HRFCD). We show that the number of infiltrating macrophages is significantly upregulated in HRFCD mouse models. Finally, we show that prevention of Ly6chi infiltrating macrophage accumulation significantly reduces biliary fibrosis, but not biliary hyperplasia, suggesting that this population may be responsible for the fibrotic progression of the disease in HRFCD patients.


Assuntos
Antígenos Ly/imunologia , Cílios/metabolismo , Epitélio , Doenças Renais Císticas , Cirrose Hepática , Fígado , Macrófagos , Animais , Cistos/metabolismo , Cistos/patologia , Modelos Animais de Doenças , Progressão da Doença , Epitélio/metabolismo , Epitélio/fisiopatologia , Doenças Renais Císticas/metabolismo , Doenças Renais Císticas/patologia , Fígado/metabolismo , Fígado/patologia , Cirrose Hepática/metabolismo , Cirrose Hepática/patologia , Macrófagos/imunologia , Macrófagos/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Regulação para Cima
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA