Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Sensors (Basel) ; 23(17)2023 Aug 22.
Artigo em Inglês | MEDLINE | ID: mdl-37687782

RESUMO

Electromagnetic induction (EMI) systems are used for mapping the soil's electrical conductivity in near-surface applications. EMI measurements are commonly affected by time-varying external environmental factors, with temperature fluctuations being a big contributing factor. This makes it challenging to obtain stable and reliable data from EMI measurements. To mitigate these temperature drift effects, it is customary to perform a temperature drift calibration of the instrument in a temperature-controlled environment. This involves recording the apparent electrical conductivity (ECa) values at specific temperatures to obtain a look-up table that can subsequently be used for static ECa drift correction. However, static drift correction does not account for the delayed thermal variations of the system components, which affects the accuracy of drift correction. Here, a drift correction approach is presented that accounts for delayed thermal variations of EMI system components using two low-pass filters (LPF). Scenarios with uniform and non-uniform temperature distributions in the measurement device are both considered. The approach is developed using a total of 15 measurements with a custom-made EMI device in a wide range of temperature conditions ranging from 10 °C to 50 °C. The EMI device is equipped with eight temperature sensors spread across the device that simultaneously measure the internal ambient temperature during measurements. To parameterize the proposed correction approach, a global optimization algorithm called Shuffled Complex Evolution (SCE-UA) was used for efficient estimation of the calibration parameters. Using the presented drift model to perform corrections for each individual measurement resulted in a root mean square error (RMSE) of <1 mSm-1 for all 15 measurements. This shows that the drift model can properly describe the drift of the measurement device. Performing a drift correction simultaneously for all datasets resulted in a RMSE <1.2 mSm-1, which is considerably lower than the RMSE values of up to 4.5 mSm-1 obtained when using only a single LPF to perform drift corrections. This shows that the presented drift correction method based on two LPFs is more appropriate and effective for mitigating temperature drift effects.

2.
Sensors (Basel) ; 22(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35632291

RESUMO

Data measured using electromagnetic induction (EMI) systems are known to be susceptible to measurement influences associated with time-varying external ambient factors. Temperature variation is one of the most prominent factors causing drift in EMI data, leading to non-reproducible measurement results. Typical approaches to mitigate drift effects in EMI instruments rely on a temperature drift calibration, where the instrument is heated up to specific temperatures in a controlled environment and the observed drift is determined to derive a static thermal apparent electrical conductivity (ECa) drift correction. In this study, a novel correction method is presented that models the dynamic characteristics of drift using a low-pass filter (LPF) and uses it for correction. The method is developed and tested using a customized EMI device with an intercoil spacing of 1.2 m, optimized for low drift and equipped with ten temperature sensors that simultaneously measure the internal ambient temperature across the device. The device is used to perform outdoor calibration measurements over a period of 16 days for a wide range of temperatures. The measured temperature-dependent ECa drift of the system without corrections is approximately 2.27 mSm-1K-1, with a standard deviation (std) of only 30 µSm-1K-1 for a temperature variation of around 30 K. The use of the novel correction method reduces the overall root mean square error (RMSE) for all datasets from 15.7 mSm-1 to a value of only 0.48 mSm-1. In comparison, a method using a purely static characterization of drift could only reduce the error to an RMSE of 1.97 mSm-1. The results show that modeling the dynamic thermal characteristics of the drift helps to improve the accuracy by a factor of four compared to a purely static characterization. It is concluded that the modeling of the dynamic thermal characteristics of EMI systems is relevant for improved drift correction.

3.
Environ Sci Technol ; 56(8): 4998-5008, 2022 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-35353529

RESUMO

Spectral induced polarization (SIP) has the potential for monitoring reactive processes in the subsurface. While strong SIP responses have been measured in response to calcite precipitation, their origin and mechanism remain debated. Here we present a novel geo-electrical millifluidic setup designed to observe microscale reactive transport processes while performing SIP measurements. We induced calcite precipitation by injecting two reactive solutions into a porous medium, which led to highly localized precipitates at the mixing interface. Strikingly, the amplitude of the SIP response increased by 340% during the last 7% increase in precipitate volume. Furthermore, while the peak frequency in SIP response varied spatially over 1 order of magnitude, the crystal size range was similar along the front, contradicting assumptions in the classical grain polarization model. We argue that the SIP response of calcite precipitation in such mixing fronts is governed by Maxwell-Wagner polarization due to the establishment of a precipitate wall. Numerical simulations of the electric field suggested that spatial variation in peak frequency was related to the macroscopic shape of the front. These findings provide new insights into the SIP response of calcite precipitation and highlight the potential of geoelectrical millifluidics for understanding and modeling electrical signatures of reactive transport processes.


Assuntos
Carbonato de Cálcio , Eletricidade , Carbonato de Cálcio/química , Precipitação Química , Porosidade
4.
Sensors (Basel) ; 19(21)2019 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-31683890

RESUMO

Multi-coil electromagnetic induction (EMI) systems induce magnetic fields below and above the subsurface. The resulting magnetic field is measured at multiple coils increasingly separated from the transmitter in a rigid boom. This field relates to the subsurface apparent electrical conductivity (σa), and σa represents an average value for the depth range investigated with a specific coil separation and orientation. Multi-coil EMI data can be inverted to obtain layered bulk electrical conductivity models. However, above-ground stationary influences alter the signal and the inversion results can be unreliable. This study proposes an improved data processing chain, including EMI data calibration, conversion, and inversion. For the calibration of σa, three direct current resistivity techniques are compared: Electrical resistivity tomography with Dipole-Dipole and Schlumberger electrode arrays and vertical electrical soundings. All three methods obtained robust calibration results. The Dipole-Dipole-based calibration proved stable upon testing on different soil types. To further improve accuracy, we propose a non-linear exact EMI conversion to convert the magnetic field to σa. The complete processing workflow provides accurate and quantitative EMI data and the inversions reliable estimates of the intrinsic electrical conductivities. This improves the ability to combine EMI with, e.g., remote sensing, and the use of EMI for monitoring purposes.

5.
J Colloid Interface Sci ; 505: 1093-1110, 2017 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-28697548

RESUMO

Montmorillonite (Mt) clays have a high specific surface area and surface charge, which confer them remarkable adsorption properties. Nevertheless, their electrochemical and aggregation behavior are not completely elucidated because of the complexity of their microstructural and interfacial properties. In this work, the conductive and dispersive properties of Na-Mt suspensions of weight fractions 0.5-5.2% were investigated for the first time using the spectral induced polarization method. A four-electrode system was used to reduce errors introduced by electrode polarization and contact resistances. Complex conductivity spectra in the low-frequency range of 0.1Hz to 45kHz were successfully described using a triple layer model of the basal surface of Mt and a complex conductivity model that considers conduction of the diffuse layer and polarization of the Stern layer. Aggregate size distributions were inferred from inverted relaxation time distributions. We found that the negative and permanent surface charge of the basal plane of Na-Mt controls its quadrature (imaginary) conductivity, which is not very sensitive to pH and salinity (NaCl) in the 100Hz to 45kHz frequency range. For lower frequencies, the sudden increase of the quadrature conductivity at the highest salinities was explained by considering coagulation of Na-Mt particles.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA