Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 14 de 14
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Nat Commun ; 15(1): 331, 2024 Jan 06.
Artigo em Inglês | MEDLINE | ID: mdl-38184686

RESUMO

Active nutrient uptake is fundamental for survival and pathogenicity of Gram-negative bacteria, which operate a multi-protein Ton system to transport essential nutrients like metals and vitamins. This system harnesses the proton motive force at the inner membrane to energize the import through the outer membrane, but the mechanism of energy transfer remains enigmatic. Here, we study the periplasmic domain of ExbD, a crucial component of the proton channel of the Ton system. We show that this domain is a dynamic dimer switching between two conformations representing the proton channel's open and closed states. By in vivo phenotypic assays we demonstrate that this conformational switch is essential for the nutrient uptake by bacteria. The open state of ExbD triggers a disorder to order transition of TonB, enabling TonB to supply energy to the nutrient transporter. We also reveal the anchoring role of the peptidoglycan layer in this mechanism. Herein, we propose a mechanistic model for the Ton system, emphasizing ExbD duality and the pivotal catalytic role of peptidoglycan. Sequence analysis suggests that this mechanism is conserved in other systems energizing gliding motility and membrane integrity. Our study fills important gaps in understanding bacterial motor mechanism and proposes novel antibacterial strategies.


Assuntos
Peptidoglicano , Prótons , Parede Celular , Nutrientes , Bactérias
2.
bioRxiv ; 2023 Aug 11.
Artigo em Inglês | MEDLINE | ID: mdl-37609138

RESUMO

Active nutrient uptake is fundamental for survival and pathogenicity of Gram-negative bacteria, which operate a multi-protein Ton system to transport essential nutrients like metals and vitamins. This system harnesses the proton motive force at the inner membrane to energize the import through the outer membrane, but the mechanism of energy transfer remains enigmatic. Here, we study the periplasmic domain of ExbD, a crucial component of the proton channel of the Ton system. We show that this domain is a dynamic dimer switching between two conformations representing the proton channel's open and closed states. By in vivo phenotypic assays we demonstrate that this conformational switch is essential for the nutrient uptake by bacteria. The open state of ExbD triggers a disorder to order transition of TonB, enabling TonB to supply energy to the nutrient transporter. We also reveal the anchoring role of the peptidoglycan layer in this mechanism. Herein, we propose a mechanistic model for the Ton system, emphasizing ExbD duality and the pivotal catalytic role of peptidoglycan. Sequence analysis suggests that this mechanism is conserved in other systems energizing gliding motility and membrane integrity. Our study fills important gaps in understanding bacterial motor mechanism and proposes novel antibacterial strategies.

3.
J Biol Chem ; 298(1): 101472, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34890646

RESUMO

Technological advances in cryo-EM in recent years have given rise to detailed atomic structures of bacteriophage tail tubes-a class of filamentous protein assemblies that could previously only be studied on the atomic scale in either their monomeric form or when packed within a crystal lattice. These hollow elongated protein structures, present in most bacteriophages of the order Caudovirales, connect the DNA-containing capsid with a receptor function at the distal end of the tail and consist of helical and polymerized major tail proteins. However, the resolution of cryo-EM data for these systems differs enormously between different tail tube types, partly inhibiting the building of high-fidelity models and barring a combination with further structural biology methods. Here, we review the structural biology efforts within this field and highlight the role of integrative structural biology approaches that have proved successful for some of these systems. Finally, we summarize the structural elements of major tail proteins and conceptualize how different amounts of tail tube flexibility confer heterogeneity within cryo-EM maps and, thus, limit high-resolution reconstructions.


Assuntos
Bacteriófagos , Proteínas do Capsídeo , Caudovirales , Bacteriófagos/química , Bacteriófagos/metabolismo , Capsídeo/química , Capsídeo/metabolismo , Proteínas do Capsídeo/metabolismo , Caudovirales/química , Caudovirales/metabolismo , Microscopia Crioeletrônica , Conformação Proteica , Vírion/metabolismo
4.
Nat Commun ; 11(1): 5759, 2020 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-33188213

RESUMO

Bacteriophage SPP1 is a double-stranded DNA virus of the Siphoviridae family that infects the bacterium Bacillus subtilis. This family of phages features a long, flexible, non-contractile tail that has been difficult to characterize structurally. Here, we present the atomic structure of the tail tube of phage SPP1. Our hybrid structure is based on the integration of structural restraints from solid-state nuclear magnetic resonance (NMR) and a density map from cryo-EM. We show that the tail tube protein gp17.1 organizes into hexameric rings that are stacked by flexible linker domains and, thus, form a hollow flexible tube with a negatively charged lumen suitable for the transport of DNA. Additionally, we assess the dynamics of the system by combining relaxation measurements with variances in density maps.


Assuntos
Siphoviridae/química , Sequência de Aminoácidos , Microscopia Crioeletrônica , Espectroscopia de Ressonância Magnética , Modelos Moleculares , Estrutura Secundária de Proteína , Siphoviridae/ultraestrutura , Termodinâmica , Proteínas Virais/química , Proteínas Virais/ultraestrutura
5.
Biochim Biophys Acta Biomembr ; 1862(2): 183114, 2020 02 01.
Artigo em Inglês | MEDLINE | ID: mdl-31666178

RESUMO

Energy-coupling factor (ECF) transporters for uptake of vitamins and transition-metal ions into prokaryotic cells share a common architecture consisting of a substrate-specific integral membrane protein (S), a transmembrane coupling protein (T) and two cytoplasmic ATP-binding-cassette-family ATPases. S components rotate within the membrane to expose their binding pockets alternately to the exterior and the cytoplasm. In contrast to vitamin transporters, metal-specific systems rely on additional proteins with essential but poorly understood functions. CbiN, a membrane protein composed of two transmembrane helices tethered by an extracytoplasmic loop of 37 amino-acid residues represents the auxiliary component that temporarily interacts with the CbiMQO2 Co2+ transporter. CbiN was previously shown to induce significant Co2+ transport activity in the absence of CbiQO2 in cells producing the S component CbiM plus CbiN or a Cbi(MN) fusion. Here we analyzed the mode of interaction between the two protein domains. Any deletion in the CbiN loop abolished transport activity. In silico predicted protein-protein contacts between segments of the CbiN loop and loops in CbiM were confirmed by cysteine-scanning mutagenesis and crosslinking. Likewise, an ordered structure of the CbiN loop was observed by electron paramagnetic resonance analysis after site-directed spin labeling. The N-terminal loop of CbiM containing three of four metal ligands was partially immobilized in wild-type Cbi(MN) but completely immobile in inactive variants with CbiN loop deletions. Decreased dynamics of the inactive form was also detected by solid-state nuclear magnetic resonance of isotope-labeled protein in proteoliposomes. In conclusion, CbiM-CbiN loop-loop interactions facilitate metal insertion into the binding pocket.


Assuntos
Transportadores de Cassetes de Ligação de ATP/metabolismo , Proteínas de Transporte de Cátions/metabolismo , Cobalto/metabolismo , Proteínas de Escherichia coli/metabolismo , Transportadores de Cassetes de Ligação de ATP/química , Sítios de Ligação , Proteínas de Transporte de Cátions/química , Proteínas de Escherichia coli/química , Ligação Proteica
6.
J Struct Biol ; 206(1): 43-48, 2019 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-29678776

RESUMO

Intra-neuronal aggregation of α-synuclein into fibrils is the molecular basis for α-synucleinopathies, such as Parkinson's disease. The atomic structure of human α-synuclein (hAS) fibrils was recently determined by Tuttle et al. using solid-state NMR (ssNMR). The previous study found that hAS fibrils are composed of a single protofilament. Here, we have investigated the structure of mouse α-synuclein (mAS) fibrils by STEM and isotope-dilution ssNMR experiments. We found that in contrast to hAS, mAS fibrils consist of two or even three protofilaments which are connected by rather weak interactions in between them. Although the number of protofilaments appears to be different between hAS and mAS, we found that they have a remarkably similar secondary structure and protofilament 3D structure as judged by secondary chemical shifts and intra-molecular distance restraints. We conclude that the two mutant sites between hAS and mAS (positions 53 and 87) in the fibril core region are crucial for determining the quaternary structure of α-synuclein fibrils.


Assuntos
Amiloide/química , Espectroscopia de Ressonância Magnética/métodos , Microscopia Eletrônica de Transmissão e Varredura/métodos , Conformação Molecular , alfa-Sinucleína/química , Amiloide/genética , Amiloide/metabolismo , Animais , Sítios de Ligação/genética , Isótopos de Carbono/química , Isótopos de Carbono/metabolismo , Humanos , Hidrogênio/química , Hidrogênio/metabolismo , Camundongos , Modelos Moleculares , Mutação , Isótopos de Nitrogênio/química , Isótopos de Nitrogênio/metabolismo , Estrutura Secundária de Proteína , alfa-Sinucleína/genética , alfa-Sinucleína/metabolismo
7.
Chemphyschem ; 19(19): 2457-2460, 2018 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-29917302

RESUMO

Proton detection and fast magic-angle spinning have advanced biological solid-state NMR, allowing for the backbone assignment of complex protein assemblies with high sensitivity and resolution. However, so far no method has been proposed to detect intermolecular interfaces in these assemblies by proton detection. Herein, we introduce a concept based on methyl labeling that allows for the assignment of these moieties and for the study of protein-protein interfaces at atomic resolution.


Assuntos
Ressonância Magnética Nuclear Biomolecular , Proteínas/química , Sequência de Aminoácidos , Glicoproteínas/química , Isoleucina/química , Estrutura Terciária de Proteína , Prótons
8.
Anal Biochem ; 550: 132-136, 2018 06 01.
Artigo em Inglês | MEDLINE | ID: mdl-29729279

RESUMO

The most widely recognized activity of the large family of the metalloenzyme carbonic anhydrases (CAs) is the diffusion-controlled hydration of CO2 to HCO3- and one proton, and the less rapid dehydration of HCO3- to CO2: CO2 + H2O ⇆ HCO3- + H+. CAs also catalyze the reaction of water with other electrophiles such as aromatic esters, sulfates and phosphates, thus contributing to lending to CAs esterase, sulfatase and phosphatase activity, respectively. Renal CAII and CAIV are involved in the reabsorption of nitrite, the autoxidation product of the signalling molecule nitric oxide (NO): 4 NO + O2 + 2 H2O → 4 ONO- + 4 H+. Bovine and human CAII and CAIV have been reported to exert nitrite reductase and nitrous anhydride activity: 2 NO2- + 2 H+ ⇆ [2 HONO] ⇆ N2O3 + H2O. In the presence of L-cysteine, NO may be formed. In the literature, these issues are controversial, mainly due to analytical shortcomings, i.e., the inability to detect authentic HONO and N2O3. Here, we present a gas chromatography-mass spectrometry (GC-MS) assay to unambiguously detect and quantify the nitrous anhydrase activity of CAs. The assay is based on the hydrolysis of N2O3 in H218O to form ON18O- and 18ON18O-. After pentafluorobenzyl bromide derivatization and electron capture negative-ion chemical ionization of the pentafluorobenzyl nitro derivatives, quantification is performed by selected-ion monitoring of the anions with mass-to-charge (m/z) ratios of 46 (ONO-), m/z 48 (ON18O- and 18ONO-), m/z 50 (18ON18O-) and m/z 47 (O15NO-, internal standard).


Assuntos
Anidrase Carbônica II/química , Anidrase Carbônica IV/química , Óxido Nítrico/química , Nitrito Redutases/química , Dióxido de Nitrogênio/química , Animais , Bovinos , Humanos
9.
Angew Chem Int Ed Engl ; 56(32): 9497-9501, 2017 08 01.
Artigo em Inglês | MEDLINE | ID: mdl-28644511

RESUMO

Obtaining unambiguous resonance assignments remains a major bottleneck in solid-state NMR studies of protein structure and dynamics. Particularly for supramolecular assemblies with large subunits (>150 residues), the analysis of crowded spectral data presents a challenge, even if three-dimensional (3D) spectra are used. Here, we present a proton-detected 4D solid-state NMR assignment procedure that is tailored for large assemblies. The key to recording 4D spectra with three indirect carbon or nitrogen dimensions with their inherently large chemical shift dispersion lies in the use of sparse non-uniform sampling (as low as 2 %). As a proof of principle, we acquired 4D (H)COCANH, (H)CACONH, and (H)CBCANH spectra of the 20 kDa bacteriophage tail-tube protein gp17.1 in a total time of two and a half weeks. These spectra were sufficient to obtain complete resonance assignments in a straightforward manner without use of previous solution NMR data.

10.
Nat Protoc ; 12(4): 764-782, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28277547

RESUMO

Solid-state NMR (ssNMR) is a technique that allows the study of protein structure and dynamics at atomic detail. In contrast to X-ray crystallography and cryo-electron microscopy, proteins can be studied under physiological conditions-for example, in a lipid bilayer and at room temperature (0-35 °C). However, ssNMR requires considerable amounts (milligram quantities) of isotopically labeled samples. In recent years, 1H-detection of perdeuterated protein samples has been proposed as a method of alleviating the sensitivity issue. Such methods are, however, substantially more demanding to the spectroscopist, as compared with traditional 13C-detected approaches. As a guide, this protocol describes a procedure for the chemical shift assignment of the backbone atoms of proteins in the solid state by 1H-detected ssNMR. It requires a perdeuterated, uniformly 13C- and 15N-labeled protein sample with subsequent proton back-exchange to the labile sites. The sample needs to be spun at a minimum of 40 kHz in the NMR spectrometer. With a minimal set of five 3D NMR spectra, the protein backbone and some of the side-chain atoms can be completely assigned. These spectra correlate resonances within one amino acid residue and between neighboring residues; taken together, these correlations allow for complete chemical shift assignment via a 'backbone walk'. This results in a backbone chemical shift table, which is the basis for further analysis of the protein structure and/or dynamics by ssNMR. Depending on the spectral quality and complexity of the protein, data acquisition and analysis are possible within 2 months.


Assuntos
Espectroscopia de Ressonância Magnética/métodos , Prótons , Bicamadas Lipídicas/química , Proteínas/química , Temperatura , Fatores de Tempo
11.
FEBS J ; 284(2): 338-352, 2017 01.
Artigo em Inglês | MEDLINE | ID: mdl-27960036

RESUMO

At the nuclear envelope, the inner nuclear membrane protein emerin contributes to the interface between the nucleoskeleton and the chromatin. Emerin is an essential actor of the nuclear response to a mechanical signal. Genetic defects in emerin cause Emery-Dreifuss muscular dystrophy. It was proposed that emerin oligomerization regulates nucleoskeleton binding, and impaired oligomerization contributes to the loss of function of emerin disease-causing mutants. We here report the first structural characterization of emerin oligomers. We identified an N-terminal emerin region from amino acid 1 to amino acid 132 that is necessary and sufficient for formation of long curvilinear filaments. In emerin monomer, this region contains a globular LEM domain and a fragment that is intrinsically disordered. Solid-state nuclear magnetic resonance analysis identifies the LEM ß-fragment as part of the oligomeric structural core. However, the LEM domain alone does not self-assemble into filaments. Additional residues forming a ß-structure are observed within the filaments that could correspond to the unstructured region in emerin monomer. We show that the delK37 mutation causing muscular dystrophy triggers LEM domain unfolding and increases emerin self-assembly rate. Similarly, inserting a disulfide bridge that stabilizes the LEM folded state impairs emerin N-terminal region self-assembly, whereas reducing this disulfide bridge triggers self-assembly. We conclude that the LEM domain, responsible for binding to the chromatin protein BAF, undergoes a conformational change during self-assembly of emerin N-terminal region. The consequences of these structural rearrangement and self-assembly events on emerin binding properties are discussed.


Assuntos
Proteínas de Ligação a DNA/química , Proteínas de Membrana/química , Mutação , Proteínas Nucleares/química , Sequência de Aminoácidos , Sítios de Ligação , Clonagem Molecular , Proteínas de Ligação a DNA/genética , Proteínas de Ligação a DNA/metabolismo , Escherichia coli/genética , Escherichia coli/metabolismo , Expressão Gênica , Humanos , Cinética , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Modelos Moleculares , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Ligação Proteica , Conformação Proteica em alfa-Hélice , Conformação Proteica em Folha beta , Domínios e Motivos de Interação entre Proteínas , Multimerização Proteica , Proteínas Recombinantes de Fusão/química , Proteínas Recombinantes de Fusão/genética , Proteínas Recombinantes de Fusão/metabolismo , Alinhamento de Sequência
12.
Phys Chem Chem Phys ; 18(44): 30696-30704, 2016 Nov 09.
Artigo em Inglês | MEDLINE | ID: mdl-27791210

RESUMO

Dynamic nuclear polarization exploits electron spin polarization to boost signal-to-noise in magic-angle-spinning (MAS) NMR, creating new opportunities in materials science, structural biology, and metabolomics studies. Since protein NMR spectra recorded under DNP conditions can show improved spectral resolution at 180-200 K compared to 110 K, we investigate the effects of AMUPol and various deuterated TOTAPOL isotopologues on sensitivity and spectral resolution at these temperatures, using proline and reproducibly prepared SH3 domain samples. The TOTAPOL deuteration pattern is optimized for protein DNP MAS NMR, and signal-to-noise per unit time measurements demonstrate the high value of TOTAPOL isotopologues for Protein DNP MAS NMR at 180-200 K. The combined effects of enhancement, depolarization, and proton longitudinal relaxation are surprisingly sample-specific. At 200 K, DNP on SH3 domain standard samples yields a 15-fold increase in signal-to-noise over a sample without radicals. 2D and 3D NCACX/NCOCX spectra were recorded at 200 K within 1 and 13 hours, respectively. Decreasing enhancements with increasing 2H-content at the CH2 sites of the TEMPO rings in CD3-TOTAPOL highlight the importance of protons in a sphere of 4-6 Å around the nitroxyl group, presumably for polarization pickup from electron spins.

13.
Amino Acids ; 48(7): 1695-706, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27129464

RESUMO

Nitric oxide (NO), S-nitrosoglutathione (GSNO) and S-nitrosocysteine are highly potent signaling molecules, acting both by cGMP-dependent and cGMP-independent mechanisms. The NO metabolite nitrite (NO2 (-)) is a major NO reservoir. Hemoglobin, xanthine oxidoreductase and carbonic anhydrase (CA) have been reported to reduce/convert nitrite to NO. We evaluated the role and the physiological importance of CA for an extra-platelet CA/nitrite/NO/cGMP pathway in human platelets. Authentic NO was analyzed by an NO-sensitive electrode. GSNO and GS(15)NO were measured by liquid chromatography-tandem mass spectrometry (LC-MS/MS). cGMP was determined by LC-MS/MS or RIA. In reduced glutathione (GSH) containing aqueous buffer (pH 7.4), human and bovine erythrocytic CAII-mediated formation of GSNO from nitrite and GS(15)NO from (15)N-nitrite. In the presence of L-cysteine and GSH, this reaction was accompanied by NO release. Incubation of nitrite with bovine erythrocytic CAII and recombinant soluble guanylyl cyclase resulted in cGMP formation. Upon incubation of nitrite with bovine erythrocytic CAII and washed human platelets, cGMP and P-VASP(S239) were formed in the platelets. This study provides the first evidence that extra-platelet nitrite and erythrocytic CAII may modulate platelet function in a cGMP-dependent manner. The new nitrite-dependent CA activity may be a general principle and explain the cardioprotective effects of inorganic nitrite in the vasculature. We propose that nitrous acid (ONOH) is the primary CA-catalyzed reaction product of nitrite.


Assuntos
Plaquetas/enzimologia , Anidrase Carbônica II , Eritrócitos/enzimologia , Nitritos , Compostos Nitrosos , Guanilil Ciclase Solúvel , Compostos de Sulfidrila , Animais , Anidrase Carbônica II/química , Anidrase Carbônica II/metabolismo , Bovinos , Humanos , Nitritos/química , Nitritos/metabolismo , Compostos Nitrosos/síntese química , Compostos Nitrosos/química , Compostos Nitrosos/metabolismo , Guanilil Ciclase Solúvel/química , Guanilil Ciclase Solúvel/metabolismo , Compostos de Sulfidrila/química , Compostos de Sulfidrila/metabolismo
14.
Amino Acids ; 48(1): 245-55, 2016 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-26334347

RESUMO

The intrinsic activity of carbonic anhydrase (CA) is the hydration of CO2 to carbonic acid and its dehydration to CO2. CA may also function as esterase and phosphatase. Recently, we demonstrated that renal CA is mainly responsible for the reabsorption of nitrite (NO2(-)) which is the most abundant reservoir of the biologically highly potent nitric oxide (NO). By means of a stable-isotope dilution GC-MS method, we discovered a novel CA activity which strictly depends upon nitrite. We found that bovine erythrocytic CAII (beCAII) catalyses the incorporation of (18)O from H2 (18)O into nitrite at pH 7.4. After derivatization with pentafluorobenzyl bromide, gas chromatographic separation and mass spectrometric analysis, we detected ions at m/z 48 for singly (18)O-labelled nitrite ((16)O=N-(18)O(-)/(18)O=N-(16)O(-)) and at m/z 50 for doubly (18)O-labelled nitrite ((18)O=N-(18)O(-)) in addition to m/z 46 for unlabelled nitrite. Using (15)N-labelled nitrite ((15)NO2 (-), m/z 47) as an internal standard and selected-ion monitoring of m/z 46, m/z 48, m/z 50 and m/z 47, we developed a GC-MS microassay for the quantitative determination of the nitrite-dependent beCAII activity. The CA inhibitors acetazolamide and FC5 207A did not alter beCAII-catalysed formation of singly and doubly (18)O-labelled nitrite. Cysteine and the experimental CA inhibitor DIDS (a diisothiocyanate) increased several fold the beCAII-catalysed formation of the (18)O-labelled nitrite species. Cysteine, acetazolamide, FC5 207A, and DIDS by themselves had no effect on the incorporation of (18)O from H2 (18)O into nitrite. We conclude that erythrocytic CA possesses a nitrite-dependent activity which can only be detected when nitrite is used as the substrate and the reaction is performed in buffers of neutral pH values prepared in H2 (18)O. This novel CA activity, i.e., the nitrous acid anhydrase activity, represents a bioactivation of nitrite and may have both beneficial (via S-nitrosylation and subsequent NO release) and possibly adverse (via C- and N-nitrosylation) effects in living organisms.


Assuntos
Anidrases Carbônicas/química , Ensaios Enzimáticos/métodos , Cromatografia Gasosa-Espectrometria de Massas/métodos , Nitritos/química , Animais , Biocatálise , Bovinos , Humanos , Nitratos/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA