Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Phys Rev E ; 106(3-1): 034116, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-36266799

RESUMO

Heat and noise control is essential for the continued development of quantum technologies. For this purpose, a particularly powerful tool is the heat rectifier, which allows for heat transport in one configuration of two baths but not the reverse. Here we propose a class of rectifiers that exploits the unidirectionality of a low temperature bath to force the system into a dark state, thus blocking heat transport in one configuration of the two baths. However, if the two baths are switched around, a heat current is observed. An implementation using a qutrit coupled to two harmonic oscillators is proposed and rectification values beyond 10^{3} are achieved for realistic parameter values. Furthermore, we show that the heat current can be amplified by an order of magnitude through external driving without diminishing the diode functionality. The heat rectification effect is seen for a large range of parameters and it is robust towards both decay and dephasing.

2.
Phys Rev Lett ; 128(24): 240401, 2022 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-35776480

RESUMO

We propose a quantum Wheatstone bridge as a fully quantum analog to the classical version. The bridge is a few-body boundary-driven spin chain exploiting quantum effects to gain an enhanced sensitivity to an unknown coupling. The sensitivity is explained by a drop in population of an entangled Bell state due to destructive interference as the controllable coupling approaches the unknown coupling. A simple criterion for the destructive interference is found, and an approximate expression for the width of the drop is derived. The sensitivity to the unknown coupling is quantified using the quantum Fisher information, and we show that the state of the bridge can be measured indirectly through the spin current. Our results are robust toward calibration errors and generic in the sense that several of the current state-of-the-art quantum platforms could be used as a means of realization. The quantum Wheatstone bridge may thus find use in fields such as sensing and metrology using near-term quantum devices.

3.
Phys Rev E ; 105(4-1): 044141, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-35590580

RESUMO

Maxwell's demon is the quintessential example of information control, which is necessary for designing quantum devices. In thermodynamics, the demon is an intelligent being who utilizes the entropic nature of information to sort excitations between reservoirs, thus lowering the total entropy. So far, implementations of Maxwell's demon have largely been limited to Markovian baths. In our work, we study the degree to which such a demon may be assisted by non-Markovian effects using a superconducting circuit platform. The setup is two baths connected by a demon-controlled qutrit interface, allowing the transfer of excitations only if the overall entropy of the two baths is lowered. The largest entropy reduction is achieved in a non-Markovian regime and, importantly, due to non-Markovian effects, the demon performance can be optimized through proper timing. Our results demonstrate that non-Markovian effects can be exploited to boost the information transfer rate in quantum Maxwell demons.

4.
Phys Rev Lett ; 126(7): 077203, 2021 Feb 19.
Artigo em Inglês | MEDLINE | ID: mdl-33666455

RESUMO

In solid state physics, giant magnetoresistance is the large change in electrical resistance due to an external magnetic field. Here we show that giant magnetoresistance is possible in a spin chain composed of weakly interacting layers of strongly coupled spins. This is found for all system sizes even down to a minimal system of four spins. The mechanism driving the effect is a mismatch in the energy spectrum resulting in spin excitations being reflected at the boundaries between layers. This mismatch, and thus the current, can be controlled by external magnetic fields resulting in giant magnetoresistance. A simple rule for determining the behavior of the spin transport under the influence of a magnetic field is presented based on the energy levels of the strongly coupled spins.

5.
Phys Rev E ; 100(3-1): 032107, 2019 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-31639993

RESUMO

With the advent of quantum technologies comes the requirement of building quantum components able to store energy to be used whenever necessary, i.e., quantum batteries. In this paper we exploit an adiabatic protocol to ensure a stable charged state of a three-level quantum battery which allows one to avoid the spontaneous discharging regime. We study the effects of the most relevant sources of noise on the charging process, and, as an experimental proposal, we discuss superconducting transmon qubits. In addition we study the self-discharging of our quantum battery where it is shown that spectrum engineering can be used to delay such phenomena.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA