Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
Front Cell Dev Biol ; 10: 1050489, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36467400

RESUMO

Multipotent mesenchymal stromal cells (MSCs) maintain cellular homeostasis and regulate tissue renewal and repair both by differentiating into mesodermal lineage, e.g., adipocytes, or managing the functions of differentiated cells. Insulin is a key physiological inducer of MSC differentiation into adipocytes, and disturbances in MSC insulin sensitivity could negatively affect adipose tissue renewal. During aging, regulation and renewal of adipose tissue cells may be disrupted due to the altered insulin signaling and differentiation potential of senescent MSCs, promoting the development of serious metabolic diseases, including metabolic syndrome and obesity. However, the potential mechanisms mediating the dysfunction of adipose-derived senescent MSC remains unclear. We explored whether aging could affect the adipogenic potential of human adipose tissue-derived MSCs regulated by insulin. Age-associated senescent MSCs (isolated from donors older than 65 years) and MSCs in replicative senescence (long-term culture) were treated by insulin to induce adipogenic differentiation, and the efficiency of the process was compared to MSCs from young donors. Insulin-dependent signaling pathways were explored in these cells. We also analyzed the involvement of extracellular vesicles secreted by MSCs (MSC-EVs) into the regulation of adipogenic differentiation and insulin signaling of control and senescent cells. Also the microRNA profiles of MSC-EVs from aged and young donors were compared using targeted PCR arrays. Both replicatively and chronologically senescent MSCs showed a noticeably decreased adipogenic potential. This was associated with insulin resistance of MSCs from aged donors caused by the increase in the basal level of activation of crucial insulin-dependent intracellular effectors ERK1/2 and Akt. To assess the impact of the paracrine cross-talk of MSCs, we analyzed microRNAs profile differences in MSC-EVs and revealed that senescent MSCs produced EVs with increased content of miRNAs targeting components of insulin-dependent signaling cascade PTEN, MAPK1, GAREM1 and some other targets. We also confirmed these data by differentiation of control MSCs in the presence of EVs from senescent cells and vice versa. Thus, aging attenuated the adipogenic potential of MSCs due to autocrine or paracrine-dependent induction of insulin resistance associated with the specific changes in MSC-EV cargo.

3.
Cancer Cell ; 40(2): 168-184.e13, 2022 02 14.
Artigo em Inglês | MEDLINE | ID: mdl-35120600

RESUMO

Standard cancer therapy targets tumor cells without considering possible damage on the tumor microenvironment that could impair therapy response. In rectal cancer patients we find that inflammatory cancer-associated fibroblasts (iCAFs) are associated with poor chemoradiotherapy response. Employing a murine rectal cancer model or patient-derived tumor organoids and primary stroma cells, we show that, upon irradiation, interleukin-1α (IL-1α) not only polarizes cancer-associated fibroblasts toward the inflammatory phenotype but also triggers oxidative DNA damage, thereby predisposing iCAFs to p53-mediated therapy-induced senescence, which in turn results in chemoradiotherapy resistance and disease progression. Consistently, IL-1 inhibition, prevention of iCAFs senescence, or senolytic therapy sensitizes mice to irradiation, while lower IL-1 receptor antagonist serum levels in rectal patients correlate with poor prognosis. Collectively, we unravel a critical role for iCAFs in rectal cancer therapy resistance and identify IL-1 signaling as an attractive target for stroma-repolarization and prevention of cancer-associated fibroblasts senescence.


Assuntos
Fibroblastos Associados a Câncer/metabolismo , Resistencia a Medicamentos Antineoplásicos , Neoplasias Retais/metabolismo , Microambiente Tumoral , Animais , Biomarcadores , Fibroblastos Associados a Câncer/patologia , Linhagem Celular Tumoral , Senescência Celular/efeitos dos fármacos , Senescência Celular/genética , Citocinas/genética , Citocinas/metabolismo , Dano ao DNA , Modelos Animais de Doenças , Suscetibilidade a Doenças , Perfilação da Expressão Gênica , Xenoenxertos , Sequenciamento de Nucleotídeos em Larga Escala , Humanos , Imuno-Histoquímica , Estimativa de Kaplan-Meier , Camundongos , Terapia Neoadjuvante , Prognóstico , Neoplasias Retais/tratamento farmacológico , Neoplasias Retais/etiologia , Neoplasias Retais/patologia , Transdução de Sinais , Microambiente Tumoral/genética
4.
NPJ Syst Biol Appl ; 4: 39, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30416750

RESUMO

Metastatic melanoma remains a life-threatening disease because most tumors develop resistance to targeted kinase inhibitors thereby regaining tumorigenic capacity. We show the 2nd generation hexavalent TRAIL receptor-targeted agonist IZI1551 to induce pronounced apoptotic cell death in mutBRAF melanoma cells. Aiming to identify molecular changes that may confer IZI1551 resistance we combined Dynamic Bayesian Network modelling with a sophisticated regularization strategy resulting in sparse and context-sensitive networks and show the performance of this strategy in the detection of cell line-specific deregulations of a signalling network. Comparing IZI1551-sensitive to IZI1551-resistant melanoma cells the model accurately and correctly predicted activation of NFκB in concert with upregulation of the anti-apoptotic protein XIAP as the key mediator of IZI1551 resistance. Thus, the incorporation of multiple regularization functions in logical network optimization may provide a promising avenue to assess the effects of drug combinations and to identify responders to selected combination therapies.

5.
FEBS Open Bio ; 8(5): 751-763, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-29744290

RESUMO

IL-1 family cytokines act as apical initiators of inflammation in many settings and can promote the production of a battery of inflammatory cytokines, chemokines and other inflammatory mediators in diverse cell types. IL-36α, IL-36ß and IL-36γ, which belong to the extended IL-1 family, have been implicated as key initiators of skin inflammation in psoriasis. IL-36γ is highly upregulated in lesional skin from psoriatic individuals, and heritable mutations in the natural IL-36 receptor antagonist result in a severe form of psoriasis. IL-36 family cytokines are initially expressed as inactive precursors that require proteolytic processing for activation. The neutrophil granule-derived protease elastase proteolytically processes and activates IL-36α and IL-36γ, increasing their biological activity ~ 500-fold, and also robustly activates IL-1α and IL-33 through limited proteolytic processing. Consequently, inhibitors of elastase activity may have potential as anti-inflammatory agents through antagonizing the activation of multiple IL-1 family cytokines. Using in silico screening approaches, we have identified small-molecule inhibitors of elastase that can antagonize activation of IL-36γ by the latter protease. The compounds reported herein may have utility as lead compounds for the development of inhibitors of elastase-mediated activation of IL-36 and other IL-1 family cytokines in inflammatory conditions, such as psoriasis.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA