Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 31
Filtrar
1.
Genes (Basel) ; 15(4)2024 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-38674458

RESUMO

Breeding improvements and quantitative trait genetics are essential to the advancement of broiler production. The impact of artificial selection on genomic architecture and the genetic markers sought remains a key area of research. Here, we used whole-genome resequencing data to analyze the genomic architecture, diversity, and selective sweeps in Cornish White (CRW) and Plymouth Rock White (PRW) transboundary breeds selected for meat production and, comparatively, in an aboriginal Russian breed of Ushanka (USH). Reads were aligned to the reference genome bGalGal1.mat.broiler.GRCg7b and filtered to remove PCR duplicates and low-quality reads using BWA-MEM2 and bcftools software; 12,563,892 SNPs were produced for subsequent analyses. Compared to CRW and PRW, USH had a lower diversity and a higher genetic distinctiveness. Selective sweep regions and corresponding candidate genes were examined based on ZFST, hapFLK, and ROH assessment procedures. Twenty-seven prioritized chicken genes and the functional projection from human homologs suggest their importance for selection signals in the studied breeds. These genes have a functional relationship with such trait categories as body weight, muscles, fat metabolism and deposition, reproduction, etc., mainly aligned with the QTLs in the sweep regions. This information is pivotal for further executing genomic selection to enhance phenotypic traits.


Assuntos
Galinhas , Polimorfismo de Nucleotídeo Único , Seleção Genética , Animais , Galinhas/genética , Locos de Características Quantitativas , Cruzamento , Federação Russa , Sequenciamento Completo do Genoma/métodos
2.
Sci Adv ; 10(15): eadj0954, 2024 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-38608027

RESUMO

Occupied between ~10,300 and 9300 years ago, the Pre-Pottery Neolithic site of Asikli Höyük in Central Anatolia went through early phases of sheep domestication. Analysis of 629 mitochondrial genomes from this and numerous sites in Anatolia, southwest Asia, Europe, and Africa produced a phylogenetic tree with excessive coalescences (nodes) around the Neolithic, a potential signature of a domestication bottleneck. This is consistent with archeological evidence of sheep management at Asikli Höyük which transitioned from residential stabling to open pasturing over a millennium of site occupation. However, unexpectedly, we detected high genetic diversity throughout Asikli Höyük's occupation rather than a bottleneck. Instead, we detected a tenfold demographic bottleneck later in the Neolithic, which caused the fixation of mitochondrial haplogroup B in southwestern Anatolia. The mitochondrial genetic makeup that emerged was carried from the core region of early Neolithic sheep management into Europe and dominates the matrilineal diversity of both its ancient and the billion-strong modern sheep populations.


Assuntos
Genoma Mitocondrial , Animais , Ovinos/genética , Filogenia , Carneiro Doméstico/genética , Turquia , África
3.
Genes (Basel) ; 15(3)2024 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-38540354

RESUMO

The search for SNPs and candidate genes that determine the manifestation of major selected traits is one crucial objective for genomic selection aimed at increasing poultry production efficiency. Here, we report a genome-wide association study (GWAS) for traits characterizing meat performance in the domestic quail. A total of 146 males from an F2 reference population resulting from crossing a fast (Japanese) and a slow (Texas White) growing breed were examined. Using the genotyping-by-sequencing technique, genomic data were obtained for 115,743 SNPs (92,618 SNPs after quality control) that were employed in this GWAS. The results identified significant SNPs associated with the following traits at 8 weeks of age: body weight (nine SNPs), daily body weight gain (eight SNPs), dressed weight (33 SNPs), and weights of breast (18 SNPs), thigh (eight SNPs), and drumstick (three SNPs). Also, 12 SNPs and five candidate genes (GNAL, DNAJC6, LEPR, SPAG9, and SLC27A4) shared associations with three or more traits. These findings are consistent with the understanding of the genetic complexity of body weight-related traits in quail. The identified SNPs and genes can be used in effective quail breeding as molecular genetic markers for growth and meat characteristics for the purpose of genetic improvement.


Assuntos
Coturnix , Estudo de Associação Genômica Ampla , Masculino , Animais , Coturnix/genética , Polimorfismo de Nucleotídeo Único/genética , Carne/análise , Peso Corporal/genética
4.
Animals (Basel) ; 14(2)2024 Jan 14.
Artigo em Inglês | MEDLINE | ID: mdl-38254427

RESUMO

The aim of the current study was to assess the female metabolic rate and test the hypothesis that there is a relationship between the egg productivity of Japanese quails from eight breeds and their morphometric, or growth, parameters. Parameters measured were body weight (B), volume (V), and surface area (S), as well as the metabolism level expressed by the ratio S/V. The collected egg performance traits were as follows: the number of eggs produced (N), the average egg weight (W), and the total egg mass (M) (i.e., N multiplied by W). To measure the S and V values, a novel technique was developed that takes into account the similarity of the quail's body to an ellipsoid. An analysis of the relationships between productivity indicators allowed us to introduce a new index called the metabolic index, B·S/V, based on all three main growth parameters in quails. Using the values of this index, we were then able to judge indirectly the level of quails' egg productivity. We went on to assess the N, W, and M values, not only depending on the size of the bird's growth parameters but also according to the degree of their changes during quail growth. These changes were expressed as the slope angles of trend lines describing the growth process data. This approach produced more accurate results for predicting the egg productivity in terms of W and M.

5.
Animals (Basel) ; 13(22)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-38003057

RESUMO

Traces of long-term artificial selection can be detected in genomes of domesticated birds via whole-genome screening using single-nucleotide polymorphism (SNP) markers. This study thus examined putative genomic regions under selection that are relevant to the development history, divergence and phylogeny among Japanese quails of various breeds and utility types. We sampled 99 birds from eight breeds (11% of the global gene pool) of egg (Japanese, English White, English Black, Tuxedo and Manchurian Golden), meat (Texas White and Pharaoh) and dual-purpose (Estonian) types. The genotyping-by-sequencing analysis was performed for the first time in domestic quails, providing 62,935 SNPs. Using principal component analysis, Neighbor-Net and Admixture algorithms, the studied breeds were characterized according to their genomic architecture, ancestry and direction of selective breeding. Japanese and Pharaoh breeds had the smallest number and length of homozygous segments indicating a lower selective pressure. Tuxedo and Texas White breeds showed the highest values of these indicators and genomic inbreeding suggesting a greater homozygosity. We revealed evidence for the integration of genomic and performance data, and our findings are applicable for elucidating the history of creation and genomic variability in quail breeds that, in turn, will be useful for future breeding improvement strategies.

6.
Biology (Basel) ; 12(7)2023 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-37508409

RESUMO

A study for genomic variation that may reflect putative selective signaling and be associated with economically important traits is instrumental for obtaining information about demographic and selection history in domestic animal species and populations. A rich variety of the Russian chicken gene pool breeds warrants a further detailed study. Specifically, their genomic features can derive implications from their genome architecture and selective footprints for their subsequent breeding and practical efficient exploitation. In the present work, whole genome genotyping of 19 chicken breeds (20 populations with up to 71 samples each) was performed using the Chicken 50 K BeadChip DNA chip. The studied breed sample included six native Russian breeds of chickens developed in the 17th-19th centuries, as well as eight Russian chicken breeds, including the Russian White (RW), created in the 20th century on the basis of improving local chickens using breeds of foreign selection. Five specialized foreign breeds of chickens, including the White Leghorn (WL), were used along with other breeds representing the Russian gene pool. The characteristics of the genetic diversity and phylogenetic relationships of the native breeds of chickens were represented in comparison with foreign breeds. It was established that the studied native breeds demonstrate their own genetic structure that distinguishes them from foreign breeds, and from each other. For example, we previously made an assumption on what could cause the differences between two RW populations, RW1 and RW2. From the data obtained here, it was verified that WL was additionally crossed to RW2, unlike RW1. Thus, inherently, RW1 is a purer population of this improved Russian breed. A significant contribution of the gene pool of native breeds to the global genetic diversity of chickens was shown. In general, based on the results of a multilateral survey of this sample of breeds, it can be concluded that phylogenetic relationships based on their genetic structure and variability robustly reflect the known, previously postulated and newly discovered patterns of evolution of native chickens. The results herein presented will aid selection and breeding work using this gene pool.

7.
J Anim Sci Biotechnol ; 14(1): 35, 2023 Feb 24.
Artigo em Inglês | MEDLINE | ID: mdl-36829208

RESUMO

BACKGROUND: The genomes of worldwide poultry breeds divergently selected for performance and other phenotypic traits may also be affected by, and formed due to, past and current admixture events. Adaptation to diverse environments, including acclimation to harsh climatic conditions, has also left selection footprints in breed genomes. RESULTS: Using the Chicken 50K_CobbCons SNP chip, we genotyped four divergently selected breeds: two aboriginal, cold tolerant Ushanka and Orloff Mille Fleur, one egg-type Russian White subjected to artificial selection for cold tolerance, and one meat-type White Cornish. Signals of selective sweeps were determined in the studied breeds using three methods: (1) assessment of runs of homozygosity islands, (2) FST based population differential analysis, and (3) haplotype differentiation analysis. Genomic regions of true selection signatures were identified by two or more methods or in two or more breeds. In these regions, we detected 540 prioritized candidate genes supplemented them with those that occurred in one breed using one statistic and were suggested in other studies. Amongst them, SOX5, ME3, ZNF536, WWP1, RIPK2, OSGIN2, DECR1, TPO, PPARGC1A, BDNF, MSTN, and beta-keratin genes can be especially mentioned as candidates for cold adaptation. Epigenetic factors may be involved in regulating some of these important genes (e.g., TPO and BDNF). CONCLUSION: Based on a genome-wide scan, our findings can help dissect the genetic architecture underlying various phenotypic traits in chicken breeds. These include genes representing the sine qua non for adaptation to harsh environments. Cold tolerance in acclimated chicken breeds may be developed following one of few specific gene expression mechanisms or more than one overlapping response known in cold-exposed individuals, and this warrants further investigation.

8.
Animals (Basel) ; 13(1)2023 Jan 03.
Artigo em Inglês | MEDLINE | ID: mdl-36611792

RESUMO

Negative heterosis can occur on different economically important traits, but the exact biological mechanisms of this phenomenon are still unknown. The present study focuses on determining the genetic factors associated with negative heterosis in interspecific hybrids between domestic sheep (Ovis aries) and argali (Ovis ammon). One locus (rs417431015) associated with viability and two loci (rs413302370, rs402808951) associated with meat productivity were identified. One gene (ARAP2) was prioritized for viability and three for meat productivity (PDE2A, ARAP1, and PCDH15). The loci associated with meat productivity were demonstrated to fit the overdominant inheritance model and could potentially be involved int negative heterosis mechanisms.

10.
Biology (Basel) ; 10(9)2021 Sep 06.
Artigo em Inglês | MEDLINE | ID: mdl-34571753

RESUMO

Comparison of genomic footprints in chicken breeds with different selection history is a powerful tool in elucidating genomic regions that have been targeted by recent and more ancient selection. In the present work, we aimed at examining and comparing the trajectories of artificial selection in the genomes of the native egg-type Russian White (RW) and meat-type White Cornish (WC) breeds. Combining three different statistics (top 0.1% SNP by FST value at pairwise breed comparison, hapFLK analysis, and identification of ROH island shared by more than 50% of individuals), we detected 45 genomic regions under putative selection including 11 selective sweep regions, which were detected by at least two different methods. Four of such regions were breed-specific for each of RW breed (on GGA1, GGA5, GGA8, and GGA9) and WC breed (on GGA1, GGA5, GGA8, and GGA28), while three remaining regions on GGA2 (two sweeps) and GGA3 were common for both breeds. Most of identified genomic regions overlapped with known QTLs and/or candidate genes including those for body temperatures, egg productivity, and feed intake in RW chickens and those for growth, meat and carcass traits, and feed efficiency in WC chickens. These findings were concordant with the breed origin and history of their artificial selection. We determined a set of 188 prioritized candidate genes retrieved from the 11 overlapped regions of putative selection and reviewed their functions relative to phenotypic traits of interest in the two breeds. One of the RW-specific sweep regions harbored the known domestication gene, TSHR. Gene ontology and functional annotation analysis provided additional insight into a functional coherence of genes in the sweep regions. We also showed a greater candidate gene richness on microchromosomes relative to macrochromosomes in these genomic areas. Our results on the selection history of RW and WC chickens and their key candidate genes under selection serve as a profound information for further conservation of their genomic diversity and efficient breeding.

11.
Front Genet ; 12: 708740, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34276802

RESUMO

Specific local environmental and sociocultural conditions have led to the creation of various goat populations in Russia. National goat diversity includes breeds that have been selected for down and mohair production traits as well as versatile local breeds for which pastoralism is the main management system. Effective preservation and breeding programs for local goat breeds are missing due to the lack of DNA-based data. In this work, we analyzed the genetic diversity and population structure of Russian local goats, including Altai Mountain, Altai White Downy, Dagestan Downy, Dagestan Local, Karachaev, Orenburg, and Soviet Mohair goats, which were genotyped with the Illumina Goat SNP50 BeadChip. In addition, we addressed genetic relationships between local and global goat populations obtained from the AdaptMap project. Russian goats showed a high level of genetic diversity. Although a decrease in historical effective population sizes was revealed, the recent effective population sizes estimated for three generations ago were larger than 100 in all studied populations. The mean runs of homozygosity (ROH) lengths ranged from 79.42 to 183.94 Mb, and the average ROH number varied from 18 to 41. Short ROH segments (<2 Mb) were predominant in all breeds, while the longest ROH class (>16 Mb) was the least frequent. Principal component analysis, Neighbor-Net graph, and Admixture clustering revealed several patterns in Russian local goats. First, a separation of the Karachaev breed from other populations was observed. Moreover, genetic connections between the Orenburg and Altai Mountain breeds were suggested and the Dagestan breeds were found to be admixed with the Soviet Mohair breed. Neighbor-Net analysis and clustering of local and global breeds demonstrated the close genetic relations between Russian local and Turkish breeds that probably resulted from past admixture events through postdomestication routes. Our findings contribute to the understanding of the genetic relationships of goats originating in West Asia and Eurasia and may be used to design breeding programs for local goats to ensure their effective conservation and proper management.

12.
Genes (Basel) ; 12(3)2021 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-33802939

RESUMO

Gotland sheep, a breed native to Gotland, Sweden (an island in the Baltic Sea), split from the Gute sheep breed approximately 100 years ago, and since, has probably been crossed with other breeds. This breed has recently gained popularity, due to its pelt quality. This study estimates the shared ancestors and identifies recent selection signatures in Gotland sheep using 600 K single nucleotide polymorphism (SNP) genotype data. Admixture analysis shows that the Gotland sheep is a distinct breed, but also has shared ancestral genomic components with Gute (~50%), Karakul (~30%), Romanov (~20%), and Fjällnäs (~10%) sheep breeds. Two complementary methods were applied to detect selection signatures: A Bayesian population differentiation FST and an integrated haplotype homozygosity score (iHS). Our results find that seven significant SNPs (q-value < 0.05) using the FST analysis and 55 significant SNPs (p-value < 0.0001) using the iHS analysis. Of the candidate genes that contain significant markers, or are in proximity to them, we identify several belongings to the keratin genes, RXFP2, ADCY1, ENOX1, USF2, COX7A1, ARHGAP28, CRYBB2, CAPNS1, FMO3, and GREB1. These genes are involved in wool quality, polled and horned phenotypes, fertility, twining rate, meat quality, and growth traits. In summary, our results provide shared founders of Gotland sheep and insight into genomic regions maintained under selection after the breed was formed. These results contribute to the detection of candidate genes and QTLs underlying economic traits in sheep.


Assuntos
Técnicas de Genotipagem/veterinária , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Carneiro Doméstico/classificação , Animais , Teorema de Bayes , Cruzamento , Efeito Fundador , Genótipo , Seleção Genética , Ovinos , Carneiro Doméstico/genética , Suécia
13.
Animals (Basel) ; 11(4)2021 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-33916207

RESUMO

Sheep farming has been an important sector of the UK's economy and rural life for many centuries. It is the favored source of wool, meat and milk products. In the era of exponential progress in genomic technologies, we can now address the questions of what is special about UK sheep breed genotypes and how they differ genetically form one another and from other countries. We can reflect how their natural history has been determined at the level of their genetic code and what traces have been left in their genomes because of selection for phenotypic traits. These include adaptability to certain environmental conditions and management, as well as resistance to disease. Application of these advancements in genetics and genomics to study sheep breeds of British domestic selection has begun and will continue in order to facilitate conservation solutions and production improvement.

14.
Life (Basel) ; 11(3)2021 Mar 18.
Artigo em Inglês | MEDLINE | ID: mdl-33803851

RESUMO

Currently, the intraspecific taxonomy of snow sheep (Ovis nivicola) is controversial and needs to be specified using DNA molecular genetic markers. In our previous work using whole-genome single nucleotide polymorphism (SNP) analysis, we found that the population inhabiting Kharaulakh Ridge was genetically different from the other populations of Yakut subspecies to which it was usually referred. Here, our study was aimed at the clarification of taxonomic status of Kharaulakh snow sheep using mitochondrial cytochrome b gene. A total of 87 specimens from five different geographic locations of Yakut snow sheep as well as 20 specimens of other recognized subspecies were included in this study. We identified 19 haplotypes, two of which belonged to the population from Kharaulakh Ridge. Median-joining network and Bayesian tree analyses revealed that Kharaulakh population clustered separately from all the other Yakut snow sheep. The divergence time between Kharaulakh population and Yakut snow sheep was estimated as 0.48 ± 0.19 MYA. Thus, the study of the mtDNA cytb sequences confirmed the results of genome-wide SNP analysis. Taking into account the high degree of divergence of Kharaulakh snow sheep from other groups, identified by both nuclear and mitochondrial DNA markers, we propose to classify the Kharaulakh population as a separate subspecies.

15.
Genes (Basel) ; 12(3)2021 03 04.
Artigo em Inglês | MEDLINE | ID: mdl-33806625

RESUMO

Despite their economic value, sheep remain relatively poorly studied animals in terms of the number of known loci and genes associated with commercially important traits. This gap in our knowledge can be filled in by performing new genome-wide association studies (GWAS) or by re-analyzing previously documented data using novel powerful statistical methods. This study is focused on the search for new loci associated with meat productivity and carcass traits in sheep. With a multivariate approach applied to publicly available GWAS results, we identified eight novel loci associated with the meat productivity and carcass traits in sheep. Using an in silico follow-up approach, we prioritized 13 genes in these loci. One of eight novel loci near the FAM3C and WNT16 genes has been replicated in an independent sample of Russian sheep populations (N = 108). The novel loci were added to our regularly updated database increasing the number of known loci to more than 140.


Assuntos
Estudo de Associação Genômica Ampla/veterinária , Locos de Características Quantitativas , Ovinos/genética , Animais , Simulação por Computador , Citocinas/genética , Produtos da Carne , Análise Multivariada , Fenótipo , Proteínas Wnt/genética
16.
Mol Biol Evol ; 38(8): 3093-3110, 2021 07 29.
Artigo em Inglês | MEDLINE | ID: mdl-33784744

RESUMO

Native cattle breeds represent an important cultural heritage. They are a reservoir of genetic variation useful for properly responding to agriculture needs in the light of ongoing climate changes. Evolutionary processes that occur in response to extreme environmental conditions could also be better understood using adapted local populations. Herein, different evolutionary histories of the world northernmost native cattle breeds from Russia were investigated. They highlighted Kholmogory as a typical taurine cattle, whereas Yakut cattle separated from European taurines approximately 5,000 years ago and contain numerous ancestral and some novel genetic variants allowing their adaptation to harsh conditions of living above the Polar Circle. Scans for selection signatures pointed to several common gene pathways related to adaptation to harsh climates in both breeds. But genes affected by selection from these pathways were mostly different. A Yakut cattle breed-specific missense mutation in a highly conserved NRAP gene represents a unique example of a young amino acid residue convergent change shared with at least 16 species of hibernating/cold-adapted mammals from six distinct phylogenetic orders. This suggests a convergent evolution event along the mammalian phylogenetic tree and fast fixation in a single isolated cattle population exposed to a harsh climate.


Assuntos
Aclimatação/genética , Evolução Biológica , Bovinos/genética , Proteínas Musculares/genética , Seleção Genética , Animais , Introgressão Genética , Genoma , Mutação de Sentido Incorreto , Polimorfismo de Nucleotídeo Único , Densidade Demográfica
17.
Mol Biol Evol ; 38(3): 838-855, 2021 03 09.
Artigo em Inglês | MEDLINE | ID: mdl-32941615

RESUMO

How animals, particularly livestock, adapt to various climates and environments over short evolutionary time is of fundamental biological interest. Further, understanding the genetic mechanisms of adaptation in indigenous livestock populations is important for designing appropriate breeding programs to cope with the impacts of changing climate. Here, we conducted a comprehensive genomic analysis of diversity, interspecies introgression, and climate-mediated selective signatures in a global sample of sheep and their wild relatives. By examining 600K and 50K genome-wide single nucleotide polymorphism data from 3,447 samples representing 111 domestic sheep populations and 403 samples from all their seven wild relatives (argali, Asiatic mouflon, European mouflon, urial, snow sheep, bighorn, and thinhorn sheep), coupled with 88 whole-genome sequences, we detected clear signals of common introgression from wild relatives into sympatric domestic populations, thereby increasing their genomic diversities. The introgressions provided beneficial genetic variants in native populations, which were significantly associated with local climatic adaptation. We observed common introgression signals of alleles in olfactory-related genes (e.g., ADCY3 and TRPV1) and the PADI gene family including in particular PADI2, which is associated with antibacterial innate immunity. Further analyses of whole-genome sequences showed that the introgressed alleles in a specific region of PADI2 (chr2: 248,302,667-248,306,614) correlate with resistance to pneumonia. We conclude that wild introgression enhanced climatic adaptation and resistance to pneumonia in sheep. This has enabled them to adapt to varying climatic and environmental conditions after domestication.


Assuntos
Adaptação Biológica/genética , Resistência à Doença/genética , Introgressão Genética , Ovinos/genética , Animais , Evolução Biológica , Mudança Climática , Variação Genética , Filogeografia , Pneumonia/imunologia , Ovinos/imunologia
18.
Mitochondrial DNA B Resour ; 5(3): 3645-3646, 2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33367043

RESUMO

Karachaev goat (Capra hircus) is a local breed from North-Caucasus region, Russia. Here we present complete mitochondrial genome of Karachaev goat from the republic of Karachaevo-Cherkessia, Russia. The length of the studied sequence was 16,624 bp in size. It was shown that the studied specimen belonged to haplogroup A.

19.
Genes (Basel) ; 11(8)2020 08 14.
Artigo em Inglês | MEDLINE | ID: mdl-32824045

RESUMO

Analysis of ancient and historical DNA has great potential to trace the genetic diversity of local cattle populations during their centuries-long development. Forty-nine specimens representing five cattle breeds (Kholmogor, Yaroslavl, Great Russian, Novgorod, and Holland), dated from the end of the 19th century to the first half of the 20th century, were genotyped for nine polymorphic microsatellite loci. Using a multiple-tube approach, we determined the consensus genotypes of all samples/loci analysed. Amplification errors, including allelic drop-out (ADO) and false alleles (FA), occurred with an average frequency of 2.35% and 0.79%, respectively. A significant effect of allelic length on ADO rate (r2 = 0.620, p = 0.05) was shown. We did not observe significant differences in genetic diversity among historical samples and modern representatives of Kholmogor and Yaroslavl breeds. The unbiased expected heterozygosity values were 0.726-0.774 and 0.708-0.739; the allelic richness values were 2.716-2.893 and 2.661-2.758 for the historical and modern samples, respectively. Analyses of FST and Jost's D genetic distances, and the results of STRUCTURE clustering, showed the maintenance of a part of historical components in the modern populations of Kholmogor and Yaroslavl cattle. Our study contributes to the conservation of biodiversity in the local Russian genetic resources of cattle.


Assuntos
Alelos , Variação Genética , Genética Populacional , Repetições de Microssatélites , Animais , Cruzamento , Bovinos , Genótipo , Análise de Componente Principal
20.
Transl Anim Sci ; 4(1): 264-274, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-32704985

RESUMO

Genomic selection is routinely used worldwide in agricultural breeding. However, in Russia, it is still not used to its full potential partially due to high genotyping costs. The use of genotypes imputed from the low-density chips (LD-chip) provides a valuable opportunity for reducing the genotyping costs. Pork production in Russia is based on the conventional 3-tier pyramid involving 3 breeds; therefore, the best option would be the development of a single LD-chip that could be used for all of them. Here, we for the first time have analyzed genomic variability in 3 breeds of Russian pigs, namely, Landrace, Duroc, and Large White and generated the LD-chip that can be used in pig breeding with the negligible loss in genotyping quality. We have demonstrated that out of the 3 methods commonly used for LD-chip construction, the block method shows the best results. The imputation quality depends strongly on the presence of close ancestors in the reference population. We have demonstrated that for the animals with both parents genotyped using high-density panels high-quality genotypes (allelic discordance rate < 0.05) could be obtained using a 300 single nucleotide polymorphism (SNP) chip, while in the absence of genotyped ancestors at least 2,000 SNP markers are required. We have shown that imputation quality varies between chromosomes, and it is lower near the chromosome ends and drops with the increase in minor allele frequency. Imputation quality of the individual SNPs correlated well across breeds. Using the same LD-chip, we were able to obtain comparable imputation quality in all 3 breeds, so it may be suggested that a single chip could be used for all of them. Our findings also suggest that the presence of markers with extremely low imputation quality is likely to be explained by wrong mapping of the markers to the chromosomal positions.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA