Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
2.
J Morphol ; 258(3): 327-35, 2003 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-14584034

RESUMO

The crocodilian spinal vein is remarkably robust yet historically overlooked. Using corrosion casting, we describe the anatomy of this vessel and its connections with the caval and hepatic venous systems in representatives from four crocodilian genera. The spinal vein arises from an enlarged occipital sinus over the medulla and extends the entire length of the vertebral column. Unlike in squamate reptiles, the spinal vein is single (nonplexiform), voluminous, and situated dorsal to the spinal cord, and plexi lateral to the cord span between emerging intercostal veins. The connections with the other venous systems are otherwise similar to those in other tetrapods. The overall anatomy of this vessel and its abundant connections with the other venous systems indicate it likely plays a primary role in returning blood to the heart from all parts of the body. Preliminary studies of function suggest that this vessel could also play an adaptive role during basking and diving.


Assuntos
Jacarés e Crocodilos/anatomia & histologia , Coluna Vertebral/irrigação sanguínea , Animais , Molde por Corrosão , Feminino , Fluoroscopia , Masculino , Especificidade da Espécie , Veias/anatomia & histologia
3.
J Morphol ; 239(2): 143-155, 1999 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-29847883

RESUMO

We examined caudal anatomy in two species of prehensile-tailed lizards, Furcifer pardalis and Corucia zebrata. Although both species use their tails to grasp, each relies on a strikingly different anatomy to do so. The underlying anatomies appear to reflect phylogenetic constraints on the consequent functional mechanisms. Caudal autotomy is presumably the ancestral condition for lizards and is allowed by a complex system of interdigitating muscle segments. The immediate ancestor of chameleons was nonautotomous and did not possess this specialized anatomy; consequently, the derived arrangement in the chameleon tail is unique among lizards. The limb functions as an articulated linkage system with long tendinous bands originating from longitudinal muscles to directly manipulate vertebrae. Corucia is incapable of autotomy, but it is immediately derived from autotomous ancestors. As such, it has evolved a biomechanical system for prehension quite different from that of chameleons. The caudal anatomy in Corucia is very similar to that of lizards with autotomous tails, yet distinct differences in the ancestral pattern and its relationship to the subdermal tunic are derived. Instead of the functional unit being individual autotomy segments, the interdigitating prongs of muscle have become fused with an emphasis on longitudinal stacks of muscular cones. The muscles originate from the vertebral column and a subdermal collagenous tunic and insert within the adjacent cone. However, there is remarkably little direct connection with the bones. The muscles have origins more associated with the tunic and muscular septa. Like the axial musculature of some fish, the tail of Corucia utilizes a design in which these collagenous elements serve as an integral skeletal component. This arrangement provides Corucia with an elegantly designed system capable of a remarkable variety of bending movements not evident in chameleon tails. J. Morphol. 239:143-155, 1999. © 1999 Wiley-Liss, Inc.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA