Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
J Control Release ; 348: 499-517, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-35691500

RESUMO

Type-I Diabetes (T1D) is caused by defective immunotolerance mechanisms enabling autoreactive T cells to escape regulation in lymphoid organs and destroy insulin-producing ß-cells in the pancreas, leading to insulin dependence. Strategies to promote ß-cell tolerance could arrest T1D. We previously showed that secretion of secondary lymphoid chemokine CCL21 by CCL21 transgenic ß-cells induced tolerance and protected non-obese diabetic (NOD) mice from T1D. T1D protection was associated with formation of lymph node-like stromal networks containing tolerogenic fibroblastic reticular cells (FRCs). Here, we developed a polyethylene glycol (PEG) hydrogel platform with hydrolytically degradable PEG-diester dithiol crosslinkers to provide controlled and sustained delivery of CCL21 and ß-cell antigens for at least 28 days in vitro and recapitulate properties associated with the tolerogenic environment of CCL21 transgenic ß-cells in our previous studies. CCL21 and MHC-II restricted antigens were tethered to gels via simple click-chemistry while MHC-I restricted antigens were loaded in PEG-based polymeric nanovesicles and incorporated in the gel networks. CCL21 and antigen release kinetics depended on the PEG gel tethering strategy and the linkers. Importantly, in vitro functionality, chemotaxis, and activation of antigen-specific T cells were preserved. Implantation of CCL21 and ß-cell antigen gels under the kidney capsule of pre-diabetic NOD mice led to enrichment of adoptively transferred antigen-specific T cells, formation of gp38 + FRC-like stromal cell networks, and increased regulation of specific T cells with reduced accumulation within pancreatic islets. Thus, our platform for sustained release of ß-cell antigens and CCL21 immunomodulatory molecule could enable the development of antigen-specific tolerance therapies for T1D.


Assuntos
Diabetes Mellitus Tipo 1 , Insulinas , Animais , Antígenos , Quimiocina CCL21 , Diabetes Mellitus Tipo 1/tratamento farmacológico , Hidrogéis , Camundongos , Camundongos Endogâmicos NOD
2.
Cell Mol Bioeng ; 13(5): 419-434, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-33184575

RESUMO

INTRODUCTION: Fibroblastic reticular cells (FRCs) support and remodel the lymph node (LN), express and present self-antigens to T cells to promote tolerance. In Type 1 diabetes (T1D), decrease in FRC frequency and in their expression of T1D-related self-antigens may hinder tolerogenic engagement of autoreactive T cells. FRC reticular organization in LNs is critical for adaptive immunity. Thus, we engineered LN-like FRC reticula to determine if FRC reticular properties were altered in T1D and to study engagement of autoreactive T cells in vitro. METHODS: We characterized FRC networks in pancreatic and skin-draining LNs of 4- and 12-week old non-obese diabetic (NOD) and diabetes resistant NOR mice by immunofluorescence. Murine FRCs isolated from NOR, NOD or human pancreatic LNs were cultured in collagen sponges for up to 21 days before immunofluorescence and flow cytometry analysis. NOD FRCs expressing T1D antigens were co-cultured with CellTrace-labeled specific T cells in 2D or in scaffolds. T cell engagement was quantified by CD25 upregulation, CellTrace dilution and by T cell tracking. RESULTS: FRC networks in both 4- and 12-week old NOD LNs displayed larger reticular pores than NOR controls. NOD FRCs had delayed scaffold remodeling compared to NOR FRCs. Expression of the gp38 FRC marker in NOD FRCs was lower than in NOR but improved in 3D. FRC reticula expressing T1D antigens promoted higher engagement of specific T cells than 2D. CONCLUSION: We engineered LN-like FRC reticula that recapitulate FRC organization and phenotype of T1D LNs for studying tolerogenic autoreactive T cell engagement in T1D.

3.
Diabetes ; 68(10): 1990-2003, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31371518

RESUMO

Tumors induce tolerance toward their antigens by producing the chemokine CCL21, leading to the formation of tertiary lymphoid organs (TLOs). Ins2-CCL21 transgenic, nonobese diabetic (NOD) mice express CCL21 in pancreatic ß-cells and do not develop autoimmune diabetes. We investigated by which mechanisms CCL21 expression prevented diabetes. Ins2-CCL21 mice develop TLOs by 4 weeks of age, consisting of naive CD4+ T cells compartmentalized within networks of CD45-gp38+CD31- fibroblastic reticular cell (FRC)-like cells. Importantly, 12-week-old Ins2-CCL21 TLOs contained FRC-like cells with higher contractility, regulatory, and anti-inflammatory properties and enhanced expression of ß-cell autoantigens compared with nontransgenic NOD TLOs found in inflamed islets. Consistently, transgenic mice harbored fewer autoreactive T cells and a higher proportion of regulatory T cells in the islets. Using adoptive transfer and islet transplantation models, we demonstrate that TLO formation in Ins2-CCL21 transgenic islets is critical for the regulation of autoimmunity, and although the effect is systemic, the induction is mediated locally likely by lymphocyte trafficking through TLOs. Overall, our findings suggest that CCL21 promotes TLOs that differ from inflammatory TLOs found in type 1 diabetic islets in that they resemble lymph nodes, contain FRC-like cells expressing ß-cell autoantigens, and are able to induce systemic and antigen-specific tolerance leading to diabetes prevention.


Assuntos
Quimiocina CCL21/metabolismo , Diabetes Mellitus Tipo 1/metabolismo , Células Secretoras de Insulina/metabolismo , Pâncreas/metabolismo , Células Estromais/metabolismo , Animais , Camundongos , Camundongos Endogâmicos NOD , Camundongos Transgênicos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA