Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Small ; 18(42): e2203338, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36103613

RESUMO

In biomolecular electronics, the role of structural order in charge transport (CT) is poorly understood. It has been reported that the metal oxide cores of protein cages (e.g., iron oxide and ferrihydrite nanoparticles (NPs) present in ferritin and E2-LFtn, which is E2 protein engineered with an iron-binding sequence) play an important role in the mechanism of CT. At the same time, the NP core also plays a major role in the structural integrity of the proteins. This paper describes the role of structural order in CT across tunnel junctions by comparing three iron-storing proteins. They are (1) DNA binding protein from starved cells (Dps, diameter (∅) = 9 nm); (2) engineered archaeal ferritin (AfFtn-AA, ∅ = 12 nm); and (3) engineered E2 of pyruvate dehydrogenase enzyme complex (E2-LFtn, ∅ = 25 nm). Both holo-Dps and apo-Dps proteins undergo CT by coherent tunneling because their globular architecture and relative structural stability provide a coherent conduction pathway. In contrast, apo-AfFtn-AA forms a disordered structure across which charges have to tunnel incoherently, but holo-AfFtn-AA retains its globular structure and supports coherent tunneling. The large E2-LFtn always forms disordered structures across which charges incoherently tunnel regardless of the presence of the NP core. These findings highlight the importance of structural order in the mechanism of CT across biomolecular tunnel junctions.


Assuntos
Proteínas de Ligação a DNA , Ferritinas , Ferritinas/química , Proteínas de Ligação a DNA/metabolismo , Ferro/química , Óxidos , Oxirredutases/metabolismo , Piruvatos
2.
Environ Res ; 205: 112529, 2022 04 01.
Artigo em Inglês | MEDLINE | ID: mdl-34883081

RESUMO

In the present work, mesoporous silica spheres-doping CuO (CuO/MSS) was prepared via a facile hydrothermal method. It acted as a peroxydisulfate (PDS) activator for the removal of bisphenol A (BPA). X-Ray diffraction (XRD), transmission electron microscope (TEM), scanning electron microscope (SEM), and energy dispersive X-ray spectroscopy (EDS) showed that CuO was successfully synthesized and silica spheres were doped in CuO. Nitrogen sorption isotherm showed that CuO/MSS, which had a high specific surface area and a narrow pore size distribution, exhibited a mesoporous structure. The effect of initial pH, PDS dosage, catalyst amount, and activation temperature was assessed. A removal efficiency of over 80% was observed after five consecutive cycles, suggesting the superior stability of the catalyst. X-ray photoelectron spectroscopy (XPS), radical quenching experiments, and electrochemical evaluation showed that BPA removal was dominated by the electron transfer among PDS, BPA, and the surface of CuO/MSS (non-radical pathway), while SO4·- and OH· radicals had a minor contribution (radical pathway). In addition, the degradation pathways of BPA were proposed according to the intermediates. Overall, this study indicates that CuO/MSS is a promising effective PDS activator to address the drawbacks of the classical Fenton process.


Assuntos
Compostos Benzidrílicos , Dióxido de Silício , Cobre , Fenóis
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA