Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Front Immunol ; 14: 1158905, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37313411

RESUMO

The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) induces B and T cell responses, contributing to virus neutralization. In a cohort of 2,911 young adults, we identified 65 individuals who had an asymptomatic or mildly symptomatic SARS-CoV-2 infection and characterized their humoral and T cell responses to the Spike (S), Nucleocapsid (N) and Membrane (M) proteins. We found that previous infection induced CD4 T cells that vigorously responded to pools of peptides derived from the S and N proteins. By using statistical and machine learning models, we observed that the T cell response highly correlated with a compound titer of antibodies against the Receptor Binding Domain (RBD), S and N. However, while serum antibodies decayed over time, the cellular phenotype of these individuals remained stable over four months. Our computational analysis demonstrates that in young adults, asymptomatic and paucisymptomatic SARS-CoV-2 infections can induce robust and long-lasting CD4 T cell responses that exhibit slower decays than antibody titers. These observations imply that next-generation COVID-19 vaccines should be designed to induce stronger cellular responses to sustain the generation of potent neutralizing antibodies.


Assuntos
COVID-19 , Humanos , Vacinas contra COVID-19 , SARS-CoV-2 , Anticorpos Neutralizantes , Aprendizado de Máquina
2.
Immunology ; 166(3): 327-340, 2022 07.
Artigo em Inglês | MEDLINE | ID: mdl-35396852

RESUMO

Age is associated with changes in the immune system which increase the risk for severe COVID-19. Here, we investigate SARS-CoV-2-reactive CD4 T cells from individuals recovered from SARS-CoV-2 infection with mild COVID-19 symptoms after 3, 6 and 9 months using incubation with SARS-CoV-2 S1, S2 and N-peptide pools, followed by flow cytometry for a Th1-activation profile or proliferation analyses. We found that SARS-CoV-2-reactive CD4 T cells are decreasing on average after 9 months but highly polyfunctional CD4 T cells can peak after 6-month recovery. We show that individuals older than 60 years of age have significantly more SARS-CoV-2-reactive T cells in their blood after 3 months of recovery compared to younger individuals and that the percentage of SARS-CoV-2-reactive Th1-directed CD4 T cells in the blood of mild-COVID-19-recovered individuals correlates with age. Finally, we show that individuals over the age of 40 have significantly increased the amounts of highly polyfunctional SARS-CoV-2-S-peptide-reactive CD4 T cells, compared to SARS-CoV-2 naïve individuals, than those under the age of 40. These findings suggest that in individuals recovered from mild COVID-19, increased age is associated with significantly more highly polyfunctional SARS-CoV-2-reactive CD4 T cells with a Th1-profile and that these responses persist over time.


Assuntos
COVID-19 , SARS-CoV-2 , Linfócitos T CD4-Positivos , Humanos , Lactente , Glicoproteína da Espícula de Coronavírus
3.
Cancers (Basel) ; 12(1)2019 Dec 31.
Artigo em Inglês | MEDLINE | ID: mdl-31906064

RESUMO

Acute myeloid leukemia (AML) is an aggressive hematological disorder mainly affecting people of older age. AML initiation is primarily attributed to mutations in crucial cellular regulators such as epigenetic factors, transcription factors, and signaling genes. AML's aggressiveness and responsiveness to treatment depends on the specific cell type where leukemia first arose. Aged hematopoietic cells are often genetically and/or epigenetically altered and, therefore, present with a completely different cellular context for AML development compared to young cells. In this review, we summarize key aspects of AML development, and we focus, in particular, on the contribution of cellular aging to leukemogenesis and on current treatment options for elderly AML patients. Hematological disorders and leukemia grow exponentially with age. So far, with conventional induction therapy, many elderly patients experience a very poor overall survival rate requiring substantial social and medical costs during the relatively few remaining months of life. The global population's age is increasing rapidly without an acceptable equal growth in therapeutic management of AML in the elderly; this is in sharp contrast to the increase in successful therapies for leukemia in younger patients. Therefore, a focus on the understanding of the biology of aging in the hematopoietic system, the development of appropriate research models, and new therapeutic approaches are urged.

5.
J Vis Exp ; (132)2018 02 21.
Artigo em Inglês | MEDLINE | ID: mdl-29553501

RESUMO

Understanding of the hematopoietic stem and progenitor cell biology has important implications for regenerative medicine and the treatment of hematological pathologies. Despite the most relevant data that can be acquired using in vivo models or primary cultures, the low abundance of hematopoietic stem and progenitor cells considerably restricts the pool of suitable techniques for their investigation. Therefore, the use of cell lines allows sufficient production of biological material for the performance of screenings or assays that require large cell numbers. Here we present a detailed description, readout, and interpretation of proliferation and differentiation assays which are used for the investigation of processes involved in myelopoiesis and neutrophilic differentiation. These experiments employ the 32D/G-CSF-R cytokine dependent murine myeloid cell line, which possesses the ability to proliferate in the presence of IL-3 and differentiate in G-CSF. We provide optimized protocols for handling 32D/G-CSF-R cells and discuss major pitfalls and drawbacks that might compromise the described assays and expected results. Additionally, this article contains protocols for lentiviral and retroviral production, titration, and transduction of 32D/G-CSF-R cells. We demonstrate that genetic manipulation of these cells can be employed to successfully perform functional and molecular studies, which can complement results obtained with primary hematopoietic stem and progenitor cells or in vivo models.


Assuntos
Células-Tronco Hematopoéticas/metabolismo , Células Mieloides/metabolismo , Animais , Diferenciação Celular , Proliferação de Células , Células-Tronco Hematopoéticas/citologia , Camundongos , Células Mieloides/citologia
7.
Nat Commun ; 8(1): 46, 2017 06 29.
Artigo em Inglês | MEDLINE | ID: mdl-28663557

RESUMO

Transcription factor C/EBPα is a master regulator of myelopoiesis and its inactivation is associated with acute myeloid leukemia. Deregulation of C/EBPα by microRNAs during granulopoiesis or acute myeloid leukemia development has not been studied. Here we show that oncogenic miR-182 is a strong regulator of C/EBPα. Moreover, we identify a regulatory loop between C/EBPα and miR-182. While C/EBPα blocks miR-182 expression by direct promoter binding during myeloid differentiation, enforced expression of miR-182 reduces C/EBPα protein level and impairs granulopoiesis in vitro and in vivo. In addition, miR-182 expression is highly elevated particularly in acute myeloid leukemia patients with C-terminal CEBPA mutations, thereby depicting a mechanism by which C/EBPα blocks miR-182 expression. Furthermore, we present miR-182 expression as a prognostic marker in cytogenetically high-risk acute myeloid leukemia patients. Our data demonstrate the importance of a controlled balance between C/EBPα and miR-182 for the maintenance of healthy granulopoiesis.C/EBPα is a critical transcription factor involved in myelopoiesis and its inactivation is associated with acute myeloid leukemia (AML). Here the authors show a negative feedback loop between C/EBPα and miR-182 and identify this miRNA as a marker of high-risk AML.


Assuntos
Proteínas Estimuladoras de Ligação a CCAAT/genética , Granulócitos , Leucemia Mieloide Aguda/genética , Leucopoese/genética , MicroRNAs/genética , Animais , Western Blotting , Proteínas Estimuladoras de Ligação a CCAAT/metabolismo , Diferenciação Celular/genética , Humanos , Leucemia Mieloide Aguda/metabolismo , Leucemia Mieloide Aguda/mortalidade , Camundongos , Camundongos Knockout , MicroRNAs/metabolismo , Prognóstico , Reação em Cadeia da Polimerase em Tempo Real
8.
Cell Death Differ ; 24(4): 705-716, 2017 04.
Artigo em Inglês | MEDLINE | ID: mdl-28186500

RESUMO

Development of hematopoietic populations through the process of differentiation is critical for proper hematopoiesis. The transcription factor CCAAT/enhancer binding protein alpha (C/EBPα) is a master regulator of myeloid differentiation, and the identification of C/EBPα target genes is key to understand this process. Here we identified the Ecotropic Viral Integration Site 2B (EVI2B) gene as a direct target of C/EBPα. We showed that the product of the gene, the transmembrane glycoprotein EVI2B (CD361), is abundantly expressed on the surface of primary hematopoietic cells, the highest levels of expression being reached in mature granulocytes. Using shRNA-mediated downregulation of EVI2B in human and murine cell lines and in primary hematopoietic stem and progenitor cells, we demonstrated impaired myeloid lineage development and altered progenitor functions in EVI2B-silenced cells. We showed that the compromised progenitor functionality in Evi2b-depleted cells can be in part explained by deregulation of cell proliferation and apoptosis. In addition, we generated an Evi2b knockout murine model and demonstrated altered properties of hematopoietic progenitors, as well as impaired G-CSF dependent myeloid colony formation in the knockout cells. Remarkably, we found that EVI2B is significantly downregulated in human acute myeloid leukemia samples characterized by defects in CEBPA. Altogether, our data demonstrate that EVI2B is a downstream target of C/EBPα, which regulates myeloid differentiation and functionality of hematopoietic progenitors.


Assuntos
Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Leucemia Mieloide Aguda/patologia , Glicoproteínas de Membrana/metabolismo , Proteínas de Membrana/metabolismo , Animais , Apoptose , Células da Medula Óssea/citologia , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular/efeitos dos fármacos , Proliferação de Células/efeitos dos fármacos , Células Cultivadas , Regulação para Baixo/efeitos dos fármacos , Estradiol/farmacologia , Fator Estimulador de Colônias de Granulócitos/farmacologia , Granulócitos/citologia , Granulócitos/metabolismo , Células-Tronco Hematopoéticas/citologia , Células-Tronco Hematopoéticas/metabolismo , Humanos , Leucemia Mieloide Aguda/metabolismo , Glicoproteínas de Membrana/antagonistas & inibidores , Glicoproteínas de Membrana/genética , Proteínas de Membrana/antagonistas & inibidores , Proteínas de Membrana/genética , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Regiões Promotoras Genéticas , Interferência de RNA , RNA Interferente Pequeno/metabolismo
9.
Oncotarget ; 8(4): 6376-6398, 2017 Jan 24.
Artigo em Inglês | MEDLINE | ID: mdl-28031527

RESUMO

The importance of iron in the growth and progression of tumors has been widely documented. In this report, we show that tumor-initiating cells (TICs), represented by spheres derived from the MCF7 cell line, exhibit higher intracellular labile iron pool, mitochondrial iron accumulation and are more susceptible to iron chelation. TICs also show activation of the IRP/IRE system, leading to higher iron uptake and decrease in iron storage, suggesting that level of properly assembled cytosolic iron-sulfur clusters (FeS) is reduced. This finding is confirmed by lower enzymatic activity of aconitase and FeS cluster biogenesis enzymes, as well as lower levels of reduced glutathione, implying reduced FeS clusters synthesis/utilization in TICs. Importantly, we have identified specific gene signature related to iron metabolism consisting of genes regulating iron uptake, mitochondrial FeS cluster biogenesis and hypoxic response (ABCB10, ACO1, CYBRD1, EPAS1, GLRX5, HEPH, HFE, IREB2, QSOX1 and TFRC). Principal component analysis based on this signature is able to distinguish TICs from cancer cells in vitro and also Leukemia-initiating cells (LICs) from non-LICs in the mouse model of acute promyelocytic leukemia (APL). Majority of the described changes were also recapitulated in an alternative model represented by MCF7 cells resistant to tamoxifen (TAMR) that exhibit features of TICs. Our findings point to the critical importance of redox balance and iron metabolism-related genes and proteins in the context of cancer and TICs that could be potentially used for cancer diagnostics or therapy.


Assuntos
Neoplasias da Mama/genética , Ferro/metabolismo , Células-Tronco Neoplásicas/enzimologia , Neoplasias da Próstata/genética , Transcriptoma , Animais , Antineoplásicos/farmacologia , Transporte Biológico , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/enzimologia , Neoplasias da Mama/patologia , Relação Dose-Resposta a Droga , Resistencia a Medicamentos Antineoplásicos , Feminino , Perfilação da Expressão Gênica , Regulação Enzimológica da Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Quelantes de Ferro/farmacologia , Leucemia Promielocítica Aguda/enzimologia , Leucemia Promielocítica Aguda/genética , Células MCF-7 , Masculino , Camundongos Transgênicos , Mitocôndrias/enzimologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Células-Tronco Neoplásicas/patologia , Fenótipo , Análise de Componente Principal , Neoplasias da Próstata/tratamento farmacológico , Neoplasias da Próstata/enzimologia , Neoplasias da Próstata/patologia , Esferoides Celulares , Tamoxifeno/farmacologia
10.
Haematologica ; 99(4): 697-705, 2014 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-24162792

RESUMO

C/EPBα proteins, encoded by the CCAAT-enhancer-binding protein α gene, play a crucial role in granulocytic development, and defects in this transcription factor have been reported in acute myeloid leukemia. Here, we defined the C/EBPα signature characterized by a set of genes up-regulated upon C/EBPα activation. We analyzed expression of the C/EBPα signature in a cohort of 525 patients with acute myeloid leukemia and identified a subset characterized by low expression of this signature. We referred to this group of patients as the C/EBPα dysfunctional subset. Remarkably, a large percentage of samples harboring C/EBPα biallelic mutations clustered within this subset. We hypothesize that re-activation of the C/EBPα signature in the C/EBPα dysfunctional subset could have therapeutic potential. In search for small molecules able to reverse the low expression of the C/EBPα signature we applied the connectivity map. This analysis predicted positive connectivity between the C/EBPα activation signature and histone deacetylase inhibitors. We showed that these inhibitors reactivate expression of the C/EBPα signature and promote granulocytic differentiation of primary samples from the C/EBPα dysfunctional subset harboring biallelic C/EBPα mutations. Altogether, our study identifies histone deacetylase inhibitors as potential candidates for the treatment of certain leukemias characterized by down-regulation of the C/EBPα signature.


Assuntos
Antineoplásicos/farmacologia , Proteína alfa Estimuladora de Ligação a CCAAT/metabolismo , Regulação Leucêmica da Expressão Gênica/efeitos dos fármacos , Inibidores de Histona Desacetilases/farmacologia , Leucemia Mieloide Aguda/genética , Leucemia Mieloide Aguda/metabolismo , Transcriptoma , Proteína alfa Estimuladora de Ligação a CCAAT/genética , Diferenciação Celular , Linhagem Celular Tumoral , Análise por Conglomerados , Perfilação da Expressão Gênica , Humanos , Mutação/efeitos dos fármacos , Mutação/genética , Ativação Transcricional
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA