Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Polymers (Basel) ; 15(12)2023 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-37376250

RESUMO

Glass fiber-reinforced polymer (GFRP) of high performance, as a relatively ideal partial or complete substitute for steel, could increase the possibility of adapting structures to changes in harsh weather environments. While GFRP is combined with concrete in the form of bars, the mechanical characteristics of GFRP cause the bonding behavior to differ significantly from that of steel-reinforced members. In this paper, a central pull-out test was applied, according to ACI440.3R-04, to analyze the influence of the deformation characteristics of GFRP bars on bonding failure. The bond-slip curves of the GFRP bars with different deformation coefficients exhibited distinct four-stage processes. Increasing the deformation coefficient of the GFRP bars is able to significantly improve the bond strength between the GFRP bars and the concrete. However, while both the deformation coefficient and concrete strength of the GFRP bars were increased, the bond failure mode of the composite member was more likely to be changed from ductile to brittle. The results show members with larger deformation coefficients and moderate concrete grades, which generally have excellent mechanical and engineering properties. By comparing with the existing bond and slip constitutive models, it was found that the proposed curve prediction model was able to well match the engineering performance of GFRP bars with different deformation coefficients. Meanwhile, due to its high practicality, a four-fold model characterizing representative stress for the bond-slip behavior was recommended in order to predict the performance of the GFRP bars.

2.
Nat Commun ; 14(1): 2083, 2023 Apr 12.
Artigo em Inglês | MEDLINE | ID: mdl-37045842

RESUMO

The Southern Atlantic-Southwest Indian ridges (SASWIR) host mid-ocean ridge basalts with a residual subduction-related geochemical fingerprint (i.e., a ghost-arc signature) of unclear origin. Here, we show through an analysis of plate kinematic reconstructions and seismic tomography models that the SASWIR subduction-modified mantle source formed in the Jurassic close to the Georgia Islands slab (GI) and remained near-stationary in the mantle reference frame. In this analysis, the GI lies far inboard the Jurassic Patagonian-Antarctic Peninsula active margin. This was formerly attributed to a large-scale flat subduction event in the Late Triassic-Early Jurassic. We propose that during this flat slab stage, the subduction-modified mantle areas beneath the Mesozoic active margin and surrounding sutures zones may have been bulldozed inland by >2280 km. After the demise of the flat slab, this mantle anomaly remained near-stationary and was sampled by the Karoo mantle plume 183 Million years (Myr) ago and again since 55 Myr ago by the SASWIR. We refer to this process as asthenospheric anomaly telescoping. This study provides a hitherto unrecognized geodynamic effect of flat subduction, the viability of which we support through numerical modeling.

3.
Biomech Model Mechanobiol ; 21(4): 1099-1115, 2022 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-35511308

RESUMO

Scaffolds are microporous biocompatible structures that serve as material support for cells to proliferate, differentiate and form functional tissue. In particular, in the field of bone regeneration, insertion of scaffolds in a proper physiological environment is known to favour bone formation by releasing calcium ions, among others, triggering differentiation of mesenchymal cells into osteoblasts. Computational simulation of molecular distributions through scaffolds is a potential tool to study the scaffolds' performance or optimal designs, to analyse their impact on cell differentiation, and also to move towards reduction in animal experimentation. Unfortunately, the required numerical models are often highly complex and computationally too costly to develop parametric studies. In this context, we propose a computational parametric reduced-order model to obtain the distribution of calcium ions in the interstitial fluid flowing through scaffolds, depending on several physical parameters. We use the well-known Proper Orthogonal Decomposition (POD) with two different variations: local POD and POD with quadratic approximations. Computations are performed using two realistic geometries based on a foamed and a 3D-printed scaffolds. The location of regions with high concentration of calcium in the numerical simulations is in fair agreement with regions of bone formation shown in experimental observations reported in the literature. Besides, reduced-order solutions accurately approximate the reference finite element solutions, with a significant decrease in the number of degrees of freedom, thus avoiding computationally expensive simulations, especially when performing a parametric analysis. The proposed reduced-order model is a competitive tool to assist the design of scaffolds in osteoinduction research.


Assuntos
Células-Tronco Mesenquimais , Alicerces Teciduais , Animais , Regeneração Óssea , Cálcio , Osteogênese , Impressão Tridimensional , Engenharia Tecidual , Alicerces Teciduais/química
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA