Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros








Base de dados
Intervalo de ano de publicação
1.
Science ; 348(6235): 670-1, 2015 May 08.
Artigo em Inglês | MEDLINE | ID: mdl-25954004

RESUMO

In core-collapse supernovae, titanium-44 ((44)Ti) is produced in the innermost ejecta, in the layer of material directly on top of the newly formed compact object. As such, it provides a direct probe of the supernova engine. Observations of supernova 1987A (SN1987A) have resolved the 67.87- and 78.32-kilo-electron volt emission lines from decay of (44)Ti produced in the supernova explosion. These lines are narrow and redshifted with a Doppler velocity of ~700 kilometers per second, direct evidence of large-scale asymmetry in the explosion.

2.
Nature ; 506(7488): 339-42, 2014 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-24553239

RESUMO

Asymmetry is required by most numerical simulations of stellar core-collapse explosions, but the form it takes differs significantly among models. The spatial distribution of radioactive (44)Ti, synthesized in an exploding star near the boundary between material falling back onto the collapsing core and that ejected into the surrounding medium, directly probes the explosion asymmetries. Cassiopeia A is a young, nearby, core-collapse remnant from which (44)Ti emission has previously been detected but not imaged. Asymmetries in the explosion have been indirectly inferred from a high ratio of observed (44)Ti emission to estimated (56)Ni emission, from optical light echoes, and from jet-like features seen in the X-ray and optical ejecta. Here we report spatial maps and spectral properties of the (44)Ti in Cassiopeia A. This may explain the unexpected lack of correlation between the (44)Ti and iron X-ray emission, the latter being visible only in shock-heated material. The observed spatial distribution rules out symmetric explosions even with a high level of convective mixing, as well as highly asymmetric bipolar explosions resulting from a fast-rotating progenitor. Instead, these observations provide strong evidence for the development of low-mode convective instabilities in core-collapse supernovae.

3.
Nature ; 434(7037): 1098-103, 2005 Apr 28.
Artigo em Inglês | MEDLINE | ID: mdl-15858565

RESUMO

Soft-gamma-ray repeaters (SGRs) are galactic X-ray stars that emit numerous short-duration (about 0.1 s) bursts of hard X-rays during sporadic active periods. They are thought to be magnetars: strongly magnetized neutron stars with emissions powered by the dissipation of magnetic energy. Here we report the detection of a long (380 s) giant flare from SGR 1806-20, which was much more luminous than any previous transient event observed in our Galaxy. (In the first 0.2 s, the flare released as much energy as the Sun radiates in a quarter of a million years.) Its power can be explained by a catastrophic instability involving global crust failure and magnetic reconnection on a magnetar, with possible large-scale untwisting of magnetic field lines outside the star. From a great distance this event would appear to be a short-duration, hard-spectrum cosmic gamma-ray burst. At least a significant fraction of the mysterious short-duration gamma-ray bursts may therefore come from extragalactic magnetars.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA